
FLUID: Flexible User Interface Distribution for
Ubiquitous Multi-device Interaction

Sangeun Oh*, Ahyeon Kim*, Sunjae Lee*, Kilho Lee*
Dae R. Jeong*, Steven Y. Ko†, Insik Shin*

*KAIST, South Korea †University at Buffalo, The State University of New York, USA
{ohsang1213,nonnos,sunjae1294,khlee.cs,dae.r.jeong,insik.shin}@kaist.ac.kr

stevko@buffalo.edu

ABSTRACT
The growing trend of multi-device ownerships creates a need
and an opportunity to use applications across multiple de-
vices. However, in general, the current app development and
usage still remain within the single-device paradigm, falling
far short of user expectations. For example, it is currently
not possible for a user to dynamically partition an existing
live streaming app with chatting capabilities across different
devices, such that she watches her favorite broadcast on her
smart TV while real-time chatting on her smartphone.
In this paper, we present FLUID, a new Android-based

multi-device platform that enables innovative ways of using
multiple devices. FLUID aims to i) allow users to migrate or
replicate individual user interfaces (UIs) of a single app on
multiple devices (high flexibility), ii) require no additional
development effort to support unmodified, legacy applica-
tions (ease of development), and iii) support a wide range of
apps that follow the trend of using custom-made UIs (wide
applicability). Previous approaches, such as screen mirror-
ing, app migration, and customized apps utilizing multiple
devices, do not satisfy those goals altogether. FLUID, on the
other hand, meets the goals by carefully analyzing which
UI states are necessary to correctly render UI objects, de-
ploying only those states on different devices, supporting
cross-device function calls transparently, and synchronizing
the UI states of replicated UI objects across multiple devices.
Our evaluation with 20 unmodified, real-world Android apps
shows that FLUID can transparently support a wide range
of apps and is fast enough for interactive use.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6169-9/19/10. . . $15.00
https://doi.org/10.1145/3300061.3345443

CCS CONCEPTS
• Human-centered computing → Graphical user in-
terfaces; User interface management systems; Ubiqui-
tous computing; Mobile computing.

KEYWORDS
Multi-device Mobile Platform; Multi-surface Computing;
User Interface Distribution;

ACM Reference Format:
Sangeun Oh, Ahyeon Kim, Sunjae Lee, Kilho Lee, Dae R. Jeong,
Steven Y. Ko, and Insik Shin. 2019. FLUID: Flexible User Interface
Distribution for Ubiquitous Multi-device Interaction. In The 25th
Annual International Conference on Mobile Computing and Network-
ing (MobiCom ’19), Oct. 21–25, 2019, Los Cabos, Mexico. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3300061.3345443

1 INTRODUCTION
Recent years have seen rapid development of mobile com-
puting and IoT technologies, such as smartphones, tablets,
smart home appliances, and smart cars. These smart devices
are now a natural part of our everyday lives, and many users
own and interact with multiple devices. According to Cisco’s
Trend Report [9], there will be 8.9 to 13.4 connected devices
per user in Western Europe and North America by year 2020.
It will be unsurprising to see the trend continue beyond that.

With the ownership of multiple devices, one can envision
many interesting and useful use cases that allow users to
interact with an application using the multiple screens of
different devices (so-called multi-surface computing). More
specifically, there are three driving factors that make multi-
surfaces a more attractive interaction environment. i) Multi-
function: a user can distribute different functionalities offered
by a single application across multiple surfaces. For example,
a user can watch a live-streaming video on a surface while
chatting with other viewers in real-time using an in-app
messenger on another surface, as illustrated in Figure 1. ii)
Multi-device: different tasks can have different device prefer-
ences due to their distinct form factors. For example, a user
can watch a movie on the larger screen of a smart TV while a

https://doi.org/10.1145/3300061.3345443
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3300061.3345443&domain=pdf&date_stamp=2019-10-11

What just happened?

Nice Goal!!

Single Surface Multi Surface

Host device Guest device

No name
Goal!!!!!

User 1
What a goal

Nickname
Wow!!!

No name
Goal!!!!!

User 1
What a goal

Nickname
Wow!!!

Figure 1: Live streaming app on single- and multi-
surfaces; Multi-surfaces allow users to enjoy live
streaming in full screen without interruption from
keyboard.

video progress bar on her smartphone, which is easier to in-
teract than a smart TV remote. iii)Multi-user: some tasks are
associated with multiple users. For example, when booking
flight tickets for a group of colleagues, a user can distribute
personal information input boxes to other smartphones in
order that each colleague can provide their personal infor-
mation (i.e., passport number) on his/her own smartphone.

Previous solutions for supporting multi-surface use cases
typically fall into one of the four categories with various lim-
itations. First, some custom apps are developed with specific
multi-surface usages in mind, such as cross-device contin-
uous video display (e.g., Netflix [35]) and multi-user collab-
orative document editing (e.g., Google Docs [19]). Yet, this
approach has limited applicability since it is only supported
by custom applications. Second, several studies [53, 56] have
introduced new programming models and/or development
tools to extend existing applications for multi-surface opera-
tions, reducing a significant amount of development effort.
However, their applicability can be limited to a small set of
applications in practice, since they only maintain the same
look-and-feel for stock Android UIs (user interfaces) but
not for app-specific custom UIs. Using custom UIs in an
application is a common practice for mobile application de-
velopment. Our analysis of the top 100 apps of Google Play
Store, conducted in May 2018, has revealed that all of the top
100 have their own custom UI components. Third, screen
sharing (or mirroring) and app migration support a wider
range of unmodified applications. The former copies a screen
from one device to another usually with a larger screen or
a better resolution (e.g., Vysor [10] and Chromecast [18]),
while the latter moves an app process to an external device
in the middle of execution and allows the app to use the
surface of the external device [52]. However, they come with
limited flexibility such that an app cannot fully exploit the
advantages of multi-surface environments. Specifically, the
screen sharing approach allows the app to display only the

same screen content on multiple surfaces. It does not allow
any other level of granularity, e.g., displaying different UI
elements on different surfaces. On the other hand, the app
migration approach allows the app to use only one surface
at a time and not multiple surfaces simultaneously. For in-
stance, it does not allow an app to display a video clip on a
smart TV and a video progress bar on a smartphone at the
same time.
In this paper, we propose a new multi-surface platform,

FLUID (FLexible UI Distribution)1, a systems solution that
overcomes the limitations of previous approaches and aims
to achieve the following design goals. i) Flexibility: the unit
of deployment between different devices should be as fine-
grained as possible to allow users to utilize multi-surfaces
to their maximum flexibility. ii) Ease of development (trans-
parency): it should not require any additional complexity for
developing multi-surface applications, as compared to the de-
velopment of single-device applications. It should also be able
to support existing unmodified applications. iii) Applicabil-
ity: it should be able to support a wide range of applications,
including the applications using custom UI components. iv)
Responsiveness: it should provide prompt response to user in-
teraction across devices. For instance, users expect feedback
on their inputs within 50 to 200 ms [5, 37, 46].
In order to satisfy the above design goals, FLUID allows

users to dynamically select individual UI elements from the
surface of one device (the host), migrate or replicate them on
the surfaces of different devices (guests), and interact with
them on all or some of the surfaces. In order to enable this,
FLUID addresses the following three technical challenges. i)
UI partitioning and distribution: FLUID carefully analyzes ap-
plication and platform UIs to find a minimal and complete set
of UI objects and their associated graphical states required
to correctly render selected UI elements, and distributes only
those objects and states across a host and guest devices. Our
decision of performing local rendering on each device is bene-
ficial in mobile wireless environments, since it not only saves
the network bandwidth but also significantly reduces the
number of network round-trips. ii) Transparent distributed UI
execution: With distributed UIs, correct execution of an app
requires cooperation between distributed states (UI objects
and graphical states) and the rest of the states. FLUID trans-
forms local method calls to RPCs (Remote Procedure Calls)
to enable seamless cross-device execution for unmodified
applications. iii) UI state synchronization: When a user repli-
cates a single UI element on multiple surfaces and interacts
with it simultaneously, FLUID synchronizes all the UI states
involved to ensure the overall correctness of execution. This
enables FLUID to provide greater flexibility with an option
to replicate UI elements.

1See http://cps.kaist.ac.kr/fluid for our demo video.

We prove the FLUID concept with a working prototype
on Android using Google Pixel XL smartphones and Pixel C
tablets. Our evaluation of the prototype shows that FLUID
achieves high flexibility and complete transparency on 20
legacy apps. Our network and power consumption evalu-
ation shows that our design optimizes network usage by
an order of magnitude compared to other approaches (e.g.,
screen mirroring, app migration) for high responsiveness,
and such optimized wireless link usage leads to low power
consumption overhead as well.

2 USE CASES
This section discusses how users can benefit from using
FLUID by presenting three categories of use cases. The cur-
rent FLUID prototype supports these use cases already with
existing applications.

Better usability. FLUID can be useful in a variety of sce-
narios, since it allows users to assign UI elements dynami-
cally as they see fit according to device characteristics such as
screen sizes and available modes of input. For instance, most
live streaming apps (e.g., Twitch [28], LiveMe [29]) allow
users to chat using a chat UI while watching videos using a
video UI. When a user is chatting, the chat UI and keyboard is
typically overlaid on top of the video UI, covering more than
a half of the video UI on a smartphone. This can seriously
degrade usability; the user may miss important moments
such as soccer goal scenes in live sports broadcasts. With
FLUID, the user can distribute the video and chat UIs across
separate devices to watch live broadcasts on one device while
chatting with others on another device. As another example,
it is typically troublesome to precisely control the progress
bar of a video player with a smart TV remote or enter des-
tinations on a car navigation touch screen from a rear seat.
With FLUID, a user can simply duplicate the video progress
bar or the navigation input UI to a smartphone to enjoy the
convenience of using a smartphone.

Collaborative use. In many cases, collaborating on a
single task with multiple users is limited to output sharing
(e.g., screen sharing [10, 15, 18]). Input collaboration, where
multiple users give parallel input for a single task, is scarcely
used except for a few cloud-based web applications (e.g.,
Google Docs [19]). With FLUID, users can transform any
Android application into a collaborative app that supports
both input collaboration and output sharing. For example,
when filling in information for a group ticket reservation,
it could be much troublesome if each person has to fill in
their information sequentially on a single device (e.g., as
the Expedia app expects [13]). With FLUID, users can now
distribute personal information UIs to each user’s device,
and fill in the information in parallel.

Privacy protection. When sharing some information
across different devices through app-level sharing or screen

La
yo

ut

W
id

ge
t

UI Tree

UI Object

App logic

Rendering

Graphical
States

Non-graphical
states

ClassA obj1

ClassB obj2

ClassC obj3

ClassD obj4

ClassE obj5

ClassF obj6
TextEdit √

Button1 Button2

App

U
I E

le
m

en
t

Figure 2: Android UI architecture

mirroring, there are risks of exposing privacy-sensitive in-
formation. For example, when mirroring the screen of a
smartphone to a public device (i.e., smart TV) in a meeting
room, a user may have to login or open a pattern lock at the
risk of exposing the user’s password or lock pattern to other
colleagues because each letter she types in or the patterns
being drawn are live-streamed to the public device. In ad-
dition, when sharing a specific email content or a specific
photo to the public device, a user might have to expose the
list of emails or photos as well. FLUID has an advantage of
selectively deploying specific UI elements (such as an email
content UI or a photo view UI) on a public device while leav-
ing the other UIs (including an email list UI and a photo list
UI) private on her smartphone.

3 BACKGROUND
To concretely explore the design space for UI distribution,
we target Android apps with graphical user interfaces (GUIs)
running on the Android virtual machine (ART). Thus, it is im-
portant to understand how Android’s UI sub-system works,
especially regarding how Android organizes and renders UI
elements. This section provides a brief overview for that, and
defines our terminology used throughout the paper.

UI architecture. As shown in Figure 2, an app consists of
a collection of UI elements, e.g., text input windows and but-
tons; from a user’s perspective, a UI element is the smallest
unit which users can interact with an application. Android
has two types of UI objects, layouts and widgets, and main-
tains them in a tree structure (called a UI tree) per application.
A widget is a graphical component that has a one-to-one
mapping to a UI element (e.g., a button), and a layout is a
container that manages how its child UI objects are posi-
tioned on their screen. Each UI object maintains a set of
states that fall into two categories; i) graphical states are the
data required and accessed during rendering (e.g., color, text,
picture, animation), and ii) non-graphical states are all other
data unrelated to rendering, typically used for app logic (e.g.,
event listeners). Note that the graphical states are typically
implemented as objects, and we refer to those objects as UI
resource objects (in short, UI resources). Each UI element is
then associated with a set of UI objects and UI resources.

(a) Paring Phase

Host device Guest device

App
packages

App
data

App
code

UI tree
UI tree

Host app FLUID wrapper app
Select

UI elements

Host device

UI tree

Host app

UI thread

Guest device

FLUID wrapper

UI thread

Host device Guest device

App
packages

App
packages

copy

(b) UI Distribution Phase (c) UI Interaction Phase

Rendering

UI tree

Rendering Rendering

UI update by
function call

UI update
by RPC

Migrate

User input Request

Figure 3: FLUID architecture and workflow overview

UI thread. Each app has a UI thread that manages the
UI tree and updates the states of all UI objects. For exam-
ple, when a user clicks a button, the UI thread triggers the
execution of the event handler associated with the button
clicked, and the event handler can change the graphical state
of the button (e.g., color). Note that such UI object and re-
source updates are done by method calls, following the OOP
encapsulation principle.

Renderer thread. Each Android app has a separate ren-
derer thread to render UI objects.When the UI thread requests
to drawUIs, the renderer thread traverses through the UI tree,
from the root to leaf nodes, and executes rendering-related
methods. We will elaborate on this in Section 5.1.

4 FLUID: SYSTEM OVERVIEW
Motivated by the use cases described in Section 2, we present
a systems solution, FLUID, that allows a user to interact with
a single unmodified app across multiple surfaces concur-
rently. We use a UI element as the unit of distribution since
it is the smallest unit of functionality that users can use
selectively. This section presents an overview of FLUID.

4.1 Workflow
Figure 3 shows FLUID’s three-phase workflow.
Pairing. FLUID first arranges pairing between a group of

trusted devices (a host and guest devices). The host device
searches nearby and shows a list of potential guest devices,
and a user simply chooses the guests from the list along
with a set of apps for multi-surface interaction. Upon a user
selection, the host device sends the app package files (i.e.,
APKs) of the selected apps to each of the selected guest
devices. After that, this process is no longer required unless
APK files are updated on the host device.

UI distribution. FLUID provides an intuitive interface
for selective UI distribution based on multi-finger tapping
gestures2. On the host device, upon user request, FLUID first
partitions the host app’s UI tree into two parts—the subtree
that corresponds to the user-selected UI elements and the rest

2Our demo video demonstrates how a user initiates UI distribution.

of the UI tree. The subtree consists of UI layout and widget
objects as well as their UI resources. Once partitioned, FLUID
sends the subtree to each guest device. On a receiving guest
device, FLUID executes a generic wrapper app to reconstruct
the received UI subtree and associated UI resources, and
displays the corresponding UI elements via local rendering
(which we call guest UI elements).

UI interaction. Upon displaying the guest UIs on a guest
surface, FLUID allows the user to interact with the host app
through host and guest UIs simultaneously across devices in
the same manner as if all the UIs were on the same device.
For instance, the user can swipe a video progress bar on a
guest surface to find which part of a video clip to display
on the host. To this end, the host app logic and guest UI
objects should interact with each other across devices. FLUID
supports such interaction, transforming local function calls
to cross-device function calls whenever necessary.

4.2 System Design
In order to enable our multi-surface execution model, FLUID
addresses the following challenges:
C1. How to partition and distribute UI objects while fully

supporting their functionality with minimal overhead?
C2. How to manage cooperation between UI objects and

app logic transparently when they are distributed
across different devices?

C3. How to preserve app consistency when UI objects are
replicated across multiple devices?

C1. A key principle of FLUID is to partition and distribute
UI objects while minimizing cross-device communication
as illustrated in Figure 4. Based on our observation that
rendering occurs frequently (e.g., 20-30 FPS) and its result has
a large amount of data, FLUID aims to achieve local rendering
of guest UI elements while eliminating any communication
in the rendering process. This is particularly beneficial in
mobile environments, since mobile wireless networks are
often subject to low bandwidth, high latency, and unstable
connectivity. FLUID not only saves the network bandwidth
but also significantly reduces the number of network round-
trips, leading to better responsiveness compared to screen

App logic

UI Object A UI Object B

Rendering

Host app

Platform

Rendering

Platform

FLUID wrapper app

User
Input

UI update
By local function call

Figure 4: UI partition & distribution

sharing that performs rendering only on the host device (as
discussed in Section 9.3).
To this end, FLUID aims to determine a minimal-yet-

complete set of UI objects and UI resources required to render
the selected UI elements on the guest device and only mi-
grate those to the guest. In the case of stock Android UIs,
such a set can be easily predefined because their related
UI resources are known in advance. However, the same ap-
proach cannot be applied to the case of app-specific custom
UIs since it is not publicly known which UI resources they
use. Thus, FLUID leverages static code analysis and runtime
object tracking to determine such a set precisely without any
false negatives (see Section 5). This way, FLUID supports
custom UIs while the state-of-the-art studies on multi-device
UI distribution [53, 56] may fail to re-create the same look-
and-feel of custom UIs.

C2. FLUID aims to support the programming abstraction
of a single device for multi-surface operations. When a user
interacts with an application across multiple surfaces, guest
UI objects and the host app logic need to cooperate with
each other. Specifically, upon user input, the guest UI ob-
jects should update UI states according to the host app logic
and/or trigger the execution of some host app functionality.
For example, when a video is paused and a user taps on a
video display window, the corresponding UI object triggers
a touch event listener that displays a video clip and causes a
progress bar to proceed in synchronization. FLUID supports
such cooperation, which is originally defined in terms of
local method calls within the same address space. FLUID
transforms them into cross-device RPCs transparently, ad-
dressing the following issues: 1) function call interception
and forwarding, and 2) seamless cross-device RPC execution
(see Section 6). This way, FLUID supports existing legacy ap-
plications without requiring any modification to their code,
maximizing applicability.

C3. In order to provide greater flexibility, FLUID gives
users an option to replicate a UI element on multiple surfaces
such that they can choose to use a single or multiple devices
when interacting with the UI element. For example, when
watching a video clip on a smart TV, a user can choose to
replicate the video progress bar on her smartphone as well

as on her smart TV in order to control it from both or either
of the devices. FLUID ensures that it deterministically applies
all updates to replicated UI states across all devices so that
the UI states are in sync. FLUID does this by making sure
that on all devices, it first triggers all updates in the exact
same way, and then executes them in the exact same way as
well. Detailed are described in Section 7.

5 SELECTIVE UI DISTRIBUTION
This section describes what FLUID does in migrating UI
elements. For responsiveness, FLUID seeks to deploy only
a minimal and complete set of UI objects and UI resources
required for rendering. To this end, it employs static code
analysis and runtime object tracking to find it, and performs
cross-device UI re-creation.

5.1 Static Code Analysis
Before UI distribution, FLUID performs static code analysis
for target apps to identify a set of candidate UI objects and UI
resources that the renderer thread may use. For each UI ob-
ject, the renderer accesses the UI object’s UI resources when
executing the following rendering functions: i) measure() to
calculate the size of each UI element to display, ii) layout()
to calculate the position of each UI, and iii) draw() to draw
the UI elements.
Since UI resources are the objects accessed during ren-

dering, we identify them by leveraging a static analysis
technique called the Class Hierarchy Analysis (CHA) using
Soot [24], an open-source static analysis tool. CHA produces
an exhaustive call graph, where each call site points to every
possible class method that can be invoked. CHA does this
by analyzing all possible class types that each call site object
can have (i.e., each call site object’s declared type and all
children types). However, Soot’s implementation of CHA is
not directly applicable to finding UI resources, since i) it is
designed for regular programs with main() (which Android
apps do not have), and ii) it does not analyze a specific part
of a program (e.g., UIs), but rather a whole program.
Thus, FLUID adopts CHA in the following three ways.

First, FLUID synthesizes a dummy program that has a main()
function in it. Second, while synthesizing the dummy pro-
gram, FLUID copies all classes from a target app (i.e., an
APK file) as well as the platform library (since the platform
library defines default UI classes). Third, FLUID puts an invo-
cation for each of the rendering functions of the View class
(the root UI class in Android) within the dummy program’s
main(). This allows Soot to perform correct CHA starting
from main() of the dummy program since every UI class is
derived from View. This way, we generate an exhaustive call
graph that contains all potentially-reachable UI resources.
From the call graph, we extract a list that includes all the

UI classes that the target app has and all classes (i.e., UI re-
sources) which are potentially accessible when each UI class
is rendered. This final list has no false negative, although it
may have false positives (which do not affect correctness).

The analysis result is deterministic on the same app unless
it is updated. Therefore, we envision a model where a server
(e.g., an app market server or a FLUID service server) per-
forms the analysis and attaches the result into an APK file of
each app, whenever a new version is released. We observe
that the sizes of our analysis result range from 163 to 236
Kbytes with 20 existing apps (described in Section 9.1), i.e.,
0.3% to 13.2% increases from their original APK file size. Thus,
we conclude that it is negligible considering the amount of
storage equipped in recent devices. In addition, we observe
that the execution of our analysis tool takes from 1m 59s to
3m 30s for the existing apps using a desktop machine with 8
cores and 64 Gbytes RAM.

5.2 Runtime Object Tracking
FLUID seeks to reduce the false positives included in the
static analysis results through runtime object tracking. To
this end, FLUID uses a serialization library called Kryo [49].
However, we modify it to suit our purposes. The reason is be-
cause, upon serializing an object (a target), Kryo explores all
reachable objects from the target dynamically and serializes
all of them together. As a result, it may serialize unneces-
sary objects (i.e., non-graphical states) when used in FLUID.
Thus, we modify Kryo to serialize a minimal set of objects,
i.e., the UI objects and resources that FLUID needs to deploy
on a guest device. Our modified Kryo receives the UI objects
that a user chooses as input and tracks the UI resources that
exist as member fields of each UI object by using the analysis
result mentioned in Section 5.1. It effectively serializes only
the intersection between the set of reachable objects that our
static analysis has produced and the set of reachable objects
that Kryo explores at run time.

5.3 Cross-device UI Re-creation
Upon receiving serialized UI resources from a host device, the
FLUID wrapper app running on a guest device reconstructs
the received UI subtree and associated UI resources through
its own UI thread, and displays the guest UI elements via
local rendering. To do so, it uses Android’s standard APIs
for programmatically creating UI elements. We note that re-
creating UI objects needs app code and other resource files
(e.g., images, fonts, etc.) for custom UIs. For this, the wrapper
app dynamically loads them from the APK file delivered at
pairing time.

6 TRANSPARENT RPC SUPPORT
Once we deploy guest UIs on guest devices, the host app
logic and guest UIs need to interact with each other. FLUID

: App logic : Function call

A

C

(a) Migration (b) Replication

B

A

C

B B B

: UI object : Function call interception

Host Guest Host Guest

Migrated Replicated

RPC

RPC

RPC
Local call

Local call Suppression

Figure 5: Transparent RPC support withmigrated and
replicated UI objects

aims to support the programming abstraction of a single
device for multi-surface operations, maximizing applicabil-
ity. Thus, FLUID transparently extends inter-object function
calls within the same address space to cross-device RPCs
as shown in Figure 5(a). This section describes how FLUID
supports transparent function call interception and seamless
RPC execution.

6.1 Transparent Function Call Interception
Normally, a function call is made by storing its arguments
and a return address in registers or the stack, and jumping
to the address of the function entry point. On virtual ma-
chine (VM)-based systems such as Android, the VM stores
and manages the entry point of each function. Thus, FLUID
modifies the Android VM (ART) and intercepts function calls
(see Figure 5(a)). FLUID replaces the entry point address of
a target function with the address of FLUID’s code gadget
which transparently converts local function calls into RPCs
(more details in Section 8). Upon intercepting a function call,
FLUID determines if it should be handled as an RPC call by
checking which device the corresponding UI resides in. If the
UI is on the guest side, FLUID creates an RPC message along
with the arguments of the target function from the registers
and the stack, and transmits it to a guest (callee) device. The
FLUID code gadget on the host (caller) device then jumps to
the return address of the target function upon receiving a
return value or an error code from the callee device. How-
ever, if the UI only exists on the host side, FLUID just jumps
to the original code of the function instead of generating
an RPC message. Such interception can cause unnecessary
performance overhead, but we show that it is negligible in
Section 9.2.

6.2 Seamless RPC Execution
Even after intercepting local calls and transforming them
into RPCs, care must be taken to correctly execute RPCs.
Broadly, there are two categories of problems that we ad-
dress for correctness. The discussion here assumes that a
host is making an RPC call to a guest, but it is equally appli-
cable the other way round. First, a problem occurs when a

target function has reference type arguments, such as uni-
form resource identifiers (URIs), since such references are
only valid on the host device. To resolve this, FLUID on the
host checks whether each argument is of a reference type or
a value type. If it is the former, FLUID copies the referenced
resource object to the guest device and allocates it properly
with a new reference. Then, FLUID on the guest replaces
the reference-type argument with the new reference such
that the target function can access the allocated resource
correctly on the guest device.

Second, when executing a target function, it may access ob-
jects that do not reside on the guest device (i.e., non-graphical
objects). In order to enable such accesses, FLUID employs
virtual objects, which are proxy objects for the real objects
that exist on the host device. When the target function ac-
cesses a virtual object, FLUID forwards it to the host device
through an RPC (see Figure 5(a)).

7 CROSS-DEVICE UI REPLICATION
In order to maximize flexibility, FLUID gives users an option
to replicate a UI element on multiple surfaces and use it on
all or some of the surfaces. For example, multiple users can
share the same UI element on their smartphones to carry out
collaborative tasks, such as playing a hidden picture puzzle
together or filling out forms jointly (e.g., putting passport
numbers for a group flight reservation). In this section, we
explain how FLUID enables this UI replication.

7.1 UI Replication Overview
The basic mechanism for UI replication is the same as the
UI distribution and RPC mechanisms described in Sections 5
and 6. This means that i) FLUID still deploys the UI objects
and UI resources necessary for rendering on guest devices,
and ii) FLUID still uses RPCs to transform local method
calls into remote method calls whenever graphical states
and non-graphical states need to interact across devices. The
difference is that UI replication now displays and manages
replicated UI elements as illustrated in Figure 5(b). In other
words, all devices (host and guest devices) now have a copy
of each (replicated) UI element and its graphical states, and
synchronize them across all devices. While doing so, FLUID
also allows a user to interact with the replicated UI elements
on all or any of the surfaces.
To enable this, FLUID implements dual execution, where

FLUID ensures that updates to replicated UI states occur
deterministically on every device (see Figure 5(b)). A state
update to a UI object occurs through the execution of a
method of the UI object; with dual execution, FLUID invokes
a UI object method not only on the local device that a user
interacts with, but also on all other devices that have replicas
of the UI object. Our dual execution requires us to address

two additional challenges, UI state synchronization and du-
plicate execution suppression, which we discuss in the rest
of this section.

7.2 UI Synchronization and Its Guarantee
In order to synchronize the states of replicated UI objects
and UI resource objects, FLUIDmakes deterministic state up-
dates for replicated objects. In other words, FLUID enforces
that the replicated executions at different devices are identi-
cal so that they can produce the same UI states. In general,
enforcing deterministic execution requires identifying the
sources of non-determinism and enforcing determinism on
them. The sources of non-determinism in a mobile system
include thread scheduling, user input, sensor input, network
input, file reads, inter-process communication, hardware
specification, random numbers, clock readings, etc. A repli-
cation system that enforces determinism must implement
a mechanism to make those non-deterministic events de-
terministic across multiple devices. For example, a previous
replication system for mobile devices (Tango [22]) logs all
non-deterministic events from a “leader” device and forwards
them to a “follower” device. Unlike Tango that provides full
replication, FLUID focuses on UI replication and employs a
customized design suitable for UI replication.
FLUID’s replication design leverages the following two

observations regarding Android’s UI execution model. First,
Android’s UI system has a single UI thread, i.e., there is only
one thread that updates the states of all UI objects. Second,
there is a single input event queue that drives the execution
of a UI thread. In other words, the execution of a UI thread is
the one that dequeues an input event from the input queue
and executes an event handler associated with the input
event. This execution model is not specific to Android; many
UI systems, for example, Swing [42], Qt [11], SWT [14], and
Cocoa [3], follow this execution model since it avoids race
conditions when updating UI states [55].
Based on these observations, our UI replication enforces

deterministic updates of replicated UI states. More specifi-
cally, we use two techniques to deterministically apply all
updates to replicated objects (UI objects and UI resources) in
the exact same way. The techniques we use are deterministic
triggering of UI state updates and deterministic execution of
UI state updates. The combination of these two techniques
guarantees the overall UI state synchronization since ev-
ery aspect of a UI state update (triggering the update and
executing it) becomes deterministic.

Deterministic triggering of UI state updates. In order
to enforce deterministic triggering of UI state updates, we
ensure that the host device imposes a total ordering of all UI
updates, and the guest devices simply follow the ordering
from the host. This would be easy if all UI updates were
triggered by the events from the host (e.g., user input on

the host device), since we would just need to make RPCs to
guest devices whenever there is a UI update to trigger the
UI update on the guest devices. However, our goal for UI
replication is to allow users to interact with replicated UI
elements across multiple devices, and user input on a guest
device can potentially change the state of a UI object. Thus,
we forward all user input events from guest devices to the
host device, and the host device enqueues the forwarded
events to its input event queue to process them. When there
is a UI update, the host device not only executes it locally
but also makes an RPC to each of the guest devices to trigger
the execution of the UI update on the guests. These local and
RPC calls occur asynchronously from each other in order to
preserve user interactivity. In addition, we enforce that the UI
thread running on a guest device (as part of the container app)
does not update replicated objects directly in any way. This
means that the only way to update the state of a replicated
UI object on a guest device is through RPCs from the host.
In summary, FLUID’s UI replication only processes two

types of input events—(i) all events in the host’s input event
queue (e.g., user input on the host), and (ii) user input events
from guests. All other events from guest devices are excluded
from processing, since our goal is enabling UI interactions
on multiple surfaces. Since the host receives all user input
events from guest devices, its input event queue naturally im-
poses a total ordering of all the events that FLUID processes.
This mechanism ensures that we trigger UI state updates
deterministically.

Deterministic execution of UI state updates. In order
to execute UI state updates deterministically, FLUID always
relies on the host to supply non-deterministic values while
executing a UI state update. For example, consider a method
call on a button UI object that updates the state. The exe-
cution of the method call might use a hardware-dependant
value, such as IMEI. Since different phones will have differ-
ent IMEI values, we cannot guarantee determinism if we
use a local IMEI value while executing the method. Thus,
instead of moving objects with non-deterministic values (e.g.,
hardware information, clock readings, random numbers, file
reads, etc.), FLUID creates virtual objects corresponding to
them, and always receives such values from the host via RPCs.
For instance, since most hardware information is accessed
by binder objects connected to external system services, our
basic mechanism can naturally handle it by simply replacing
binder objects with virtual objects.

7.3 Duplicate Execution Suppression
As discussed, our UI replication makes RPCs to execute non-
replicated parts of an app. At the same time, its original UI
residing in the host device also executes the non-replicated
parts as well. Unfortunately, this has an undesirable conse-
quence of duplicate execution, where a non-replicatedmethod

is invoked multiple times due to replicated executions on dif-
ferent devices. For example, suppose a user replicates a video
playback control on a guest device from the host. When she
clicks on a play button on either the host or the guest surface,
FLUID arranges each device to update the graphical state of
the play button through dual execution. Each device then
makes an individual RPC to the host app logic (which is a
non-replicated part) to start the video. However, this will
result in two calls and the host app logic will end up toggling
the video status twice, which will pause the video instead of
playing it. To address this problem, FLUID caches the result
of a method execution and provides the cached result to an
RPC for the method (see Figure 5(b)).

8 IMPLEMENTATION
To build a FLUID prototype, we have mainly modified Kryo
to serialize UI objects and UI resources (1,111 LoC), Android
Java framework to manage distributed UI subtrees and event
queues of UI threads across devices (1,766 LoC), and Android
VM, ART (Android Runtime), with a code gadget that con-
sists of ARM assembly code and C++ native code for control
flow hijacking (1,874 LoC). We have also added the FLUID
system service to support device pairing (1,566 LoC). Due
to the space limit, this section only describes implementa-
tion details for control flow hijacking, which is one of the
key techniques to support transparent cross-device RPC and
seamless dual execution.

Function call interception. We have modified the class
loader of Android ART to implement the transparent func-
tion call interception described in Section 6. When loading
Java classes into memory, the ART class loader creates an
ArtMethod object, which is the metadata of the functions of
each class, and sets the entry point of each function. At this
point, we set the entry point of the function to the address
of FLUID code gadget.
Function return interception. To record the return

value of a function as described in Section 7.3, we use the LR
(Link Register) register to access and store return addresses.
Specifically, when intercepting a call to the target function,
FLUID changes the LR register value to the address of FLUID
code gadget and jumps to the original entry point of the tar-
get function. This way, upon completing the execution of
the target function, the control flow returns to the FLUID
code gadget again, and FLUID records its return value.

Conflict with garbage collector. One of the problems
that we have faced with FLUID code gadget is a conflict with
the GC.When intercepting a function call, the assembly code
of FLUID first saves its caller’s context (e.g., registers) on
the stack and then performs computation to make several
decisions, such as deciding where to forward the call and

Type User case scenario Custom UI
type

App name
(Downloads)

FLUID App
migration

size
(Kbytes)

Network
round-trip

Arg.
(Bytes)

Ret.
(Bytes)

UI distribution
size (KBytes)

Usability

Edit text on different device Edit Text
Color note (100M) 1 0 0 8.7 16,500
Text editor (1M) 1 587 0 35.8 46,100

Control media with different
device

SeekBar,
Button

VLC Player (100M) 1 14 0 998.5 38,000
Music Player (0.5M) 1 128 0 358.4 18,700

Control painting tool
with different device

Scroll, Button,
Image

PaperDraw (10M) 1 666 0 2,026.1 21,300
Paint (1M) 1 1,602 0 272.5 63,400

Chatting with different device
while broadcasting

Edit Text,
Button

LiveMe (50M) 2 72 1 45.3 85,600
Afreeca TV (10M) 5 8 1 234.3 43,000

Search destination with different
device

Edit Text,
Button

Naver map (10M) 1 67 1 37.9 199,000
Maps.me (50M) 1 0 1 126.1 94,500

Read document with different
device Text, Scroll

File Viewer (1M) 0 0 0 8.9 11,700
Bible KJV (10M) 0 0 0 20.7 97,200

Privacy

Login with personal device Edit Text
Instagram (1B) 1 5 1 12.5 45,900
PayPal (50M) 1 94 0 19.6 54,000

Unlock pattern with personal
device Pattern

Smart AppLock (10M) 1 8 0 3.6 29,600
AppLock (10M) 1 8 0 106.3 67,500

Sharing photo to public device Image
Gallery (10M) 0 0 0 182.9 51,200
A+ Gallery (10M) 0 0 0 362.8 66,300

Collabo.
Use Fill in information collaboratively Text, Edit Text

eBay (100M) 1 55 1 62.9 73,500
Booking.com (100M) 1 67 1 97.7 93,000

Table 1: Use case list for coverage test. ‘Custom UI type’ is a super class of distributed UI. ‘Arg.’ and ‘Ret.’ indicate
the maximum amounts of data transferred for the arguments and return values of RPCs, respectively.

whether the call is being made to a replicated portion. Un-
like Dalvik VM that maintains two separate stacks for each
thread, one for Java code and the other for native code, ART
uses a single, unified stack for both Java and native code.
In ART, when the GC walks through the stack in order to
reach Java objects in the heap, problems occur since it is not
able to parse the stack frame that FLUID directly manages
to store the context information. Thus, we have modified
the ART garbage collector such that it skips the stack frames
associated with FLUID native code and walks through Java
stack frames properly without crashing.

9 EVALUATION
We have implemented a FLUID prototype to demonstrate its
complete operation of selective UI distribution across mul-
tiple surfaces for unmodified applications, maintaining the
same look-and-feel successfully for not only stock Android
UIs but also custom UIs.
The FLUID implementation used for our evaluation is

based on Android Open Source Project (AOSP) v.8.1.0 (Oreo).
We have used a Google Pixel XL (smartphone) and a Pixel
C (tablet) across the evaluation. During the evaluation, we
have enabled all cores to run at the maximumCPU frequency
(2x2.15GHz & 2x1.6GHz), and connected all devices to the
same Wi-Fi access point with a throughput of 45 Mbps, and

a round-trip time (RTT) with the median, average, and stan-
dard deviation of 32.1, 42.9, 40.31 ms, respectively.

9.1 Coverage Test
In order to explore how well FLUID supports possible use
cases and existing applications, we have evaluated 10 use
case scenarios described in Section 2. For each use case sce-
nario, we have used two legacy applications from Google
Play. Table 1 shows the list of use cases and apps we have
evaluated. We have confirmed that all 20 legacy apps use
custom UIs, and FLUID successfully enables them to operate
over multiple surfaces of heterogeneous devices: phone-to-
phone, phone-to-tablet, and tablet-to-phone.
The ‘network round-trip’ column in Table 1 shows the

maximum number of communication between the host and
guest devices during the execution of a single method on
the guest device in each scenario. It is noteworthy that the
number ranges only from 0 to 5, mostly 1; no communica-
tion occurred for the case where no input was given (e.g.,
File Viewer, Gallery). This shows that our selective UI dis-
tribution model (described in Section 5) have successfully
partitioned a complete set of UI objects and UI resources,
thereby minimizing the number of network round-trips.
The ‘UI distribution size’ column represents the amount

of data that FLUID has transferred in the process of UI migra-
tion. The ‘app migration size’ column represents the amount

0

100

200

300

400

500

600

700

800

D
is

tr
ib

ut
io

n
Ti

m
e

(m
s)

Serialization Network Activity launch Restoration Rendering

Figure 6: UI distribution time

of data in memory (i.e., code, stack and heap) that each app
allocated right after we launched it (i.e., when its memory
usage is at the minimum), for which we use Android Profiler
tool [20] to measure. Since an app migration approach (e.g.,
Flux [52]) transfers its entire memory usage, this measure-
ment can serve as a lower bound on the amount of data to
transfer if we were to migrate an entire app, which would
be incomparably larger than the UI distribution size. This
indicates that FLUID has transferred a very small portion of
the app’s entire data space for UI distribution, demonstrating
that FLUID has successfully identified not only complete,
but also a minimal set of UI resources.

9.2 Performance Test
We quantitatively evaluate the performance of FLUID for
its multi-surface operations. For each experiment, we have
repeated ten times with three different device setups: phone-
to-phone, phone-to-tablet, and tablet-to-phone. However, we
only show phone-to-phone results for brevity because the
results of the other device setups show a similar tendency3.

UI distribuion time. In order to evaluate the perfor-
mance of FLUID in deploying UI elements on a guest device,
we define UI distribution time as the time difference between
the user input that triggers the UI distribution and the final
screen update on the guest device, which is inclusive of the
time required for network transfer and rendering. Figure 6
breaks down the UI distribution time measured for 20 legacy
apps listed in Table 1. It ranges from 132 to 735 ms depending
on which UI type to deploy, since different UI elements are
subject to different sets of UI objects and UI resources for
rendering. It shows that FLUID distributes UI elements on
a different device fast enough for interactive use. It shows
that FLUID distributes UI elements on a different device fast
enough for interactive use.
It is worth noting that in many of the cases, serialization

has large overhead. As mentioned earlier, we have modified
a serialization library called Kryo [49] in our current pro-
totype. Even though our modification reduces the amount

3Remaining results are provided in our supplement file [40].

0

50

100

150

200

250

300

M
irr

or
in

g

FL
U

ID

M
irr

or
in

g

FL
U

ID

M
irr

or
in

g

FL
U

ID

M
irr

or
in

g

FL
U

ID

M
irr

or
in

g

FL
U

ID

TextView ImageView ToggleButton SeekBar ProgressBar

R
es

po
ns

e
Ti

m
e

(m
s)

Encoding RPC serialization Network Decoding RPC execution Rendering

Figure 7: UI response time

of serialized objects, the overhead of serialization remains
high. However, we have noticed that there are performance
optimization opportunities in Kryo, e.g., avoiding deep and
frequent recursions that the current Kryo implementation
has.We expect that we can bring down the performance over-
head by leveraging those opportunities. We also expect that
using a different serialization library that is more optimized
for performance can reduce the overhead.

UI response time. For UIs deployed on a guest surface,
we measure what we call UI response time. It is the delay be-
tween when a user gives a touch input on the guest surface
and when the guest surface completes displaying the result
of the touch input. Figure 7 shows the average UI response
times in updating five most popular UI widgets with FLUID,
compared to an open-source screen mirroring program, SCR-
CPY [15]. We note that a UI response time in FLUID depends
on the size of the arguments passed to an RPC, and we set
it to the maximum argument size of 2,000 bytes. 2,000 bytes
is larger than the largest RPC argument size we have ob-
served (1,602 bytes) while profiling 20 legacy apps, as shown
in Table 1. The figure shows FLUID outperforms the screen
mirroring approach by 2x to 4x.

RPC performance overhead. We have measured the
overhead that FLUID imposes when supporting RPC (as
discussed in Section 6.1) by comparing the function ex-
ecution times for three cases: i) without any intercep-
tion (i.e., on stock Android), ii) with interceptions but no
RPC, and iii) with both interceptions and RPCs. We have
used a custom app that repeatedly calls a simple function
TextView.setText() 100 times. Our results show that the
three cases respectively took 215 us, 221 us, and 2,811 us on
average (with the standard deviations of 63 us, 61 us, and 876
us, respectively) to run the simple function. It means that the
interception overhead of FLUID is 6 us on average, which is
negligible. On the other hand, the third case has relatively
large latency due to the RPC overhead. It is an inevitable
cost for cross-device communication, but we expect it can
be mitigated by using advanced wireless technologies such
as 5G [38] or 802.11ad [39].

15.6

3.5
1.5

17.8

4.1
1.7

28.6

0.9

0.7 1.9 1.4 0.4

7.5

2.4
0.1

11.5

3.0
0.1

6.1
2.7

0.2
0

5

10

15

20

25

30
Vy

so
r

C
hr

om
e

FL
U

ID
Vy

so
r

C
hr

om
e

FL
U

ID
Vy

so
r

C
hr

om
e

FL
U

ID
Vy

so
r

C
hr

om
e

FL
U

ID
Vy

so
r

C
hr

om
e

FL
U

ID
Vy

so
r

C
hr

om
e

FL
U

ID
Vy

so
r

C
hr

om
e

FL
U

ID

A+Gallery Gallery VLC Music
Player

Naver
Map

Maps.me eBay

Tr
an

sf
er

 S
iz

e
(M

by
te

s) Init Inactive Active

Figure 8: Data usage comparison

9.3 Network Optimization
Figure 7 indicates that network transfer time dominates the
UI response time for both FLUID and SCRCPY. In order to
further investigate their network usage, we have designed
an experiment where we measure the amount of network
traffic in the following three stages: i) init: initialization for
user interaction, i.e., launching an app’s activity for screen
sharing and UI re-creation on a guest device for FLUID, ii)
inactive: an idle period until the 10-second mark where we
do not perform any interaction, and iii) active: a period of
touch events starting from the 10-secondmark. By this exper-
iment, we compare the network usage of FLUID and screen
mirroring, which can be used for several multi-surface sce-
narios. While screen mirroring has to copy the entire screen
between devices, FLUID allows users to selectively deploy
only the desired UIs to other devices to support the same
use cases. The approaches result in different resource us-
age, in particular, as to network traffic amounts which affect
response time and energy consumption.
We have performed this experiment for 7 legacy applica-

tions under their respective UI scenarios shown in Table 1
using FLUID as well as two of the most popular screen shar-
ing applications, Chromecast and Vysor. Figure 8 shows the
total amount of data transferred across 7 legacy applications.
We observe that FLUID incurs an order of magnitude smaller
amount of transferred data than the other two approaches in
all cases. We also note that Vysor supports mirroring in the
full resolution of the host device at the cost of transferring
a large amount of data, while Chromecast provides a lower
resolution to reduce the amount of data transferred. It is
interesting to see that FLUID provides the same resolution
as that of Vysor with a much smaller network cost, even
smaller than Chromecast providing a lower resolution.
We further investigate how different approaches behave

by looking into the case of Naver Maps. The scenario that
we have evaluated is deploying a text input box on a guest
device, tapping the text input box to set the focus, and typing
11 characters and the enter key in the text input box as the
location to search. Figure 9 plots the amount of transferred

Tr
an

sf
er

re
d

pa
ck

et
s

(B
yt

es
)

Time (s)

init

init

init typing

typing

typing

inactive

inactive

inactive enter

enter

enter

Figure 9: Byte transfer over time

data over time, with the three stages of init, inactive, and ac-
tive. In the figure, high density areas represent very frequent
network transmissions, and Vysor shows different densities
over time, representing that it employs an adaptive screen
update frequency. In the active stage, Vysor shows denser
lines than in the inactive stage, indicating that it sends screen
updates more frequently when user input is given. In any
case, it has transferred a large amount of data. Chromecast
has similar densities periodically, indicating that it has trans-
ferred frames at a fixed frequency regardless of user input.
It has transferred a smaller amount of data than Vysor, most
likely due to its lower resolution. On the other hand, FLUID
shows a completely different network usage, and has trans-
ferred close to zero amount of data in the inactive stage and a
much smaller amount of data (roughly 209 bytes on average)
at a remarkably lower frequency in the active stage. This is
because FLUID has transferred only the data (e.g., RPC argu-
ments and return values) necessary to support cross-device
inter-object cooperation through RPCs. It is interesting to
see that there are exactly 11 peaks (marked with red dots)
in between setting focus on the input box and pressing the
enter key, which correspond to the 11 characters typed. We
observe that FLUID optimizes network performance by min-
imizing both the amount of data transferred and the number
of network round-trips.

9.4 Power Consumption
To evaluate the power consumption of FLUID, we have con-
ducted an experiment on 3 legacy apps under the same sce-
nario used for Figure 8 using Monsoon Power Monitor [50].
For each application, we have measured the average power
consumption of the host and guest devices of FLUID, the
host devices of Chromecast and Vysor, and a single device
system. Figure 10 shows that for both host and guest devices,
FLUID uses power comparable to the single device system.
Vysor and Chromecast, on the other hand, shows noticeable
overhead compared to FLUID.
To examine the source of power consumption, we have

plotted the power consumption of Naver Maps over time.

0

2

4

6

8

10

12

C V F/H F/G S C V F/H F/G S C V F/H F/G S
Naver Map eBay VLC

Po
w

er
 c

on
su

m
pt

io
n

(W
)

Init Inactive Active

C: Chromecast V: Vysor F/H: FLUID Host F/G: FLUID Guest S: Single device

Figure 10: Power consumption comparison

0
5

10
15

0 5 10 15 20 25

0
5

10
15

0 5 10 15 20 25

0
5

10
15

0 5 10 15 20 25

0
5

10
15

0 5 10 15 20 25

0
5

10
15

0 5 10 15 20 25

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
W

)

init(1.93W) inactive(1.20W) active(1.54W)

active(2.65W)inactive(2.00W)init(2.86W)

init(3.80W) inactive(2.25W)
Chromecast

active(2.87W)

init(2.71W) inactive(0.80W) active(1.97W)

init(2.19W) inactive(0.91W) active(1.28W)

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

Single Device

0 5 10 15 20 25
FLUID Guest

FLUID Host

Vysor

Time (s)

Figure 11: Power consumption over time

As Figure 11 demonstrates, power consumption follows the
same trend as byte transfer over time (Figure 9), which in-
dicates that the source of FLUID, Vysor, and Chromecast’s
power consumption overhead is mostly from network usage.
We note that we have not explicitly addressed power op-

timization in this paper. Instead, we mostly focused on op-
timizing the performance by reducing network latency, as
evaluated in Section 9.3. It is interesting to see that, since
network usage dominates the power consumption overhead,
efficient use of wireless network leads to reduced energy
consumption as well.

9.5 Compatibility
The core FLUID design principles, such as object serializa-
tion and cross-device RPC, are dependent on the Android’s
class definitions. However, since such definitions are differ-
ent according to the Android versions, FLUID may not work
properly between the devices equipped with different An-
droid versions. To explore the variance of class definition,

v.6.0 to v.8.1 v.8.1 to v.6.0 v.7.0 to v.8.1 v.8.1 to v.7.0

Same Field 96% 87% 98% 94%

Same Method 90% 82% 96% 92%

Table 2: Compatibility across Android versions
we have measured the differences of field and method defini-
tions between Oreo (v.8.1), Nougat (v.7.0) and Marshmallow
(v.6.0) for common classes. As Table 2 shows, the majority
of field and method definitions are identical across the ver-
sions. From our observation that most Android apps have the
same or similar look-and-feel regardless of Android versions,
we can deduce that most Android UI objects share common
methods and fields as a base.
To test our hypothesis, we have implemented a sim-

ple translation layer prototype inside the serialization and
RPC management to translate four UI objects: TextView,
EditText, Button, and a custom UI (SeekBar) from Oreo to
Marshmallow. The prototype serializes the common fields,
along with dummy data for other fields, and translates com-
mon methods of the four UI objects (e.g., setText()), according
to the definition of Marshmallow. We have confirmed that
all four UIs and their common methods work seamlessly and
maintain the same look-and-feel across Oreo and Marshmal-
low. We leave the automation of this translation layer to be
a topic for future work.

10 RELATEDWORK
App-level multi-surface support.Many custom applica-
tions are available for multi-surface operations, including
Google Docs [19], Netflix [35], and YouTube [21]. They al-
low multiple individual copies installed on different devices
to share the same app contents through cloud servers, en-
abling a user to continue tasks across multiple devices and/or
to perform collaborative tasks with others simultaneously.
However, this approach requires a significant amount of en-
gineering effort to develop custom apps, and its applicability
is very limited in that only custom apps can support certain
multi-surface operations. On the other hand, as a system so-
lution, FLUID is able to support a wider range of unmodified
applications while incurring no additional development cost.

New programming models/tools. There are several
studies that propose new programming models or develop-
ment tools for multi-surface app development. UIWear [53]
automatically generates an app for wearable devices by ex-
tracting UIs from a smartphone app. CollaDroid [56] intro-
duces a code instrumentation tool that transforms an app
such that it can distribute UIs to other devices. They can
reduce development costs by automatically creating multi-
surface apps without requiring app source code (i.e., Java
code). However, they can only maintain the same look-and-
feel for stock Android UIs, and they cannot do so for app-
specific custom UIs. This is because they do not consider how

to extract the app-specific graphical states related to custom
UIs. On the other hand, FLUID performs code analysis on
Android’s platform code as well as app code to figure out
the graphical states of custom UIs without false negatives
and provide greater applicability. In addition, there are many
tools [6, 7, 16, 26, 36] that allow app developers to co-design
UIs for multiple devices. Although these tools help easing
the process of developing multi-device apps, it has the initial
learning curve for each tool and still requires efforts at devel-
opment time. There are also other studies [25, 33, 34, 43, 54]
on development frameworks that distribute the UIs of web
applications, but they cannot be applied to mobile apps.

Screen sharing. There are a number of screen shar-
ing (or screen mirroring) applications that transfer screens
from one device to another, such as Vysor [10], Scrcpy [15],
Teamviewer [51], and Chromecast [18]. However, since this
approach basically duplicates screens at a coarse-grained
level (i.e., at the level of the whole device screen or the whole
app screen), its use cases are limited to take full advantage
of multiple surfaces from the user’s viewpoint. For instance,
it does not support one of FLUID’s use cases where a single
app deploys different UIs on different surfaces. Exception-
ally, Chromecast allows an app to transfer only partial UIs
through customization; that is, it is applicable only to cus-
tomized apps (developed to use Chromecast), but not to other
unmodified apps.

App/thread migration. Flux [52] supports app migra-
tion such that an appmigrates to another device in themiddle
of execution and use the surface of the guest device. How-
ever, since Flux allows the app to only use one surface among
multiple at a time, the app cannot distribute different UIs to
different surfaces and use them concurrently, which is possi-
ble with FLUID. A great deal of work has been done to sup-
port thread migration, such as MAUI [12], CloneCloud [8],
and COMET [23]. While aiming at achieving performance
gains by offloading compute-intensive workloads to servers
with higher computing power, they typically do not consider
the optimization issues involved in offloading UI workloads
for interactive use, which is one of the focuses of this paper.

Cross-device RPC. RPC has been used in many dis-
tributed systems for decades with the support of API libraries
such as Java RMI [44], Microsoft .NET Remoting [30], and
JSON-RPC [32]. Mobile Plus [41] may be the closest work
to ours in terms of extending within-device function calls
to cross-device. However, there are a significant difference
that Mobile Plus extends inter-process method calls to cross-
device RPC while FLUID extends intra-process method calls
within the same address space and supports dual execution.
Such a key difference introduces new challenges that were
not considered by Mobile Plus, including how to intercept
local method calls transparently and provide correctness for
replicated RPC calls.

Cross-device I/O sharing. There are a few studies that
propose multi-device systems for I/O sharing. Rio [2] sup-
ports sharing of I/O resources across devices via virtualiza-
tion at the device file layer. M2 [1] presents a data-centric
solution that utilizes high-level device data to support I/O
sharing between heterogeneous devices. MobiUS [45] en-
ables display sharing between devices to play a video with
high resolution. However, these systems do not allow apps
to utilize different device screens at a fine-grained level (i.e.,
at the level of UI elements), which is possible with FLUID.

11 DISCUSSION
Direct memory writes to UI objects. The current proto-
type of FLUID does not support direct memory writes to
UI objects and resources, i.e., direct writes to their public
fields. However, such cases rarely happen since most app de-
velopers follow the principle of encapsulating the graphical
states of UI objects and updating them only through method
calls, instead of direct writes, to avoid race conditions [31].
We can still extend FLUID to provide support via field-level
distributed shared memory (DSM) (e.g., COMET [23]), just
for public fields. Alternatively, FLUID can leverage write bar-
riers used in a GC, where every write is checked for access.
By leveraging this, FLUID can transparently intercept every
write as we do for method calls.

Native object serialization. Unless a developer uses a
serialization library, C++ by itself does not have any sup-
port for serialization. This is because it does not provide
runtime type information as Java does through reflection.
Thus, the current FLUID prototype adds serialization for only
the native objects of Android C++ graphics libraries (e.g.,
Skia [47]) but not for custom graphics libraries. We have
confirmed that the current prototype still supports the 20
different legacy applications listed in Table 1, since they all
use custom Java objects but not any custom native objects.
Furthermore, we have studied 43 open-source apps which
received 4,505 stars scores on average on GitHub [17] and
checked only one of them employs custom C++ graphics
libraries. It means most apps tend to use the Android C++
graphics libraries. If the C++ compiler provides complete
runtime type information in the future, FLUID can support
custom native objects without changing its design.

Multi-surface layouts. During the coverage tests de-
scribed in Section 9.1, we have noticed a case which could im-
prove usability with slight help from app developers. Specifi-
cally, the current prototype of FLUID allows a user to select
only visible UI elements for migration or replication, and this
may yield a situation different from the user’s expectation.
As an example, inMaps.me, a related query window switches
from invisible to visible only after the user starts typing in a
text input box. This makes it impossible to migrate both UIs

before the user types in. Yet, such a limitation can be easily
overcome if app developers can combine the text input box
and its related query window into a single container UI. In
addition, FLUID allows the renderer thread on a guest device
to render guest UI objects by changing the scale according to
the guest surface resolution for better usability. This does not
violate our deterministic execution guarantee (in Section 7.2),
since it does not modify the graphical states of replicated
UI objects. However, if app developers provide layout guide-
lines, they can precisely control how FLUID displays UIs on
different surfaces. For example, if a UI element on the guest
should be placed at a relative position of other UIs left on the
host, FLUID handles it in a naive manner by just ignoring
the configuration and placing the element at an arbitrary
position (e.g., the middle of screen). The layout guidelines
can better address such issues that may harm app usability
due to UI layouts changed by FLUID unintentionally.

Failure handling. Failures may occur due to various
causes (e.g., battery depletion, network failure, etc.), and
FLUID can handle failures differently for migration and
replication. For UI replication, FLUID simply discards failed
guests as all updates are replicated. For UI migration, there
can be two options. One option is to employ (i) record-and-
replay techniques [27, 52] to re-create failed guest UIs on the
host surface if a guest fails, and (ii) clean up the remaining
UI objects on each guest device if the host fails. The second
option is to use UI replication by default even for UI migra-
tion, and simply make migrated UIs invisible on the host.
This simplifies failure handling. We leave the evaluation of
these different options as part of our future work.

Runtime layout change. Upon runtime configurations
(e.g., orientation) change, a host app may apply a new UI
layout; if this occurs, the app removes all UI objects of the
old layout, and creates new UI objects according to the new
layout. What this means for guest UIs is that they need to be
removed and re-created as well according to the new layout.
Although we do not handle such cases in the current FLUID
prototype, we can extend it to automatically deploy new UIs
upon any configuration change. Since UIs in different layouts
are essentially the same ones, their looks are similar; we can
leverage this insight and potentially construct mappings
between UI objects of different layouts by measuring their
similarity. Using this information, if the orientation of the
host device is changed from portrait to landscape, we can
automatically replace the old UI with the new UI of the
landscape layout. We leave it as our future work.

Dynamically loaded UI objects. Even if a UI object is
dynamically created, our static analysis can identify its graph-
ical states as long as its definition (bytecode) is statically
included in its app or the platform library. However, it is
difficult to support UI objects if their code is dynamically
loaded, since it cannot be analyzed beforehand. For example,

an app may create some UIs using bytecode received from
remote servers at runtime. To support such UIs, FLUID can
be extended to run the static analysis for the dynamically
loaded code blocks on the host device.

Multiple devices with similar I/O spec. FLUID allows
users to select a device on which UIs are placed if there are
multiple devices with similar I/O peripherals. Also, FLUID
can use UI assignment policies as done in previous sys-
tems [25, 43] to distribute UIs across devices automatically.

Applying FLUID to other systems. Although FLUID is
specialized for Android, its general design is applicable to
other mobile platforms. FLUID was designed under the key
assumption that UIs are managed by a hierarchical structure
and their states can be updated by functions called from a
UI thread. This is a common design paradigm of GUI-based
systems (e.g., UIView [48] in iOS). To support such mobile
platforms, we will face the following three challenges: i) Iden-
tifying graphical states of each UI object via static analysis.
It is difficult to apply CHA to an app compiled down to a
binary. However, if app developers perform CHA provided
by compilers (e.g., Swift SIL optimizer [4]), FLUID can use its
result easily. ii) Serializing UI objects with graphical states.
It is difficult to serialize objects if a system does not provide
complete runtime information. However, as mentioned ear-
lier, we can address it by extending compilers to produce
such information. iii) Transforming function calls into RPCs
transparently. If a system is not VM-based, it is possible
to use instrumentation and add extra code to generate and
transmit RPC messages, instead of call interceptions.

12 CONCLUSION
We have presented FLUID, an Android-based platform that
enables innovative uses of unmodified applications on mul-
tiple device. FLUID selectively migrates or replicates indi-
vidual UI elements on multiple surfaces, and transparently
manages cross-device cooperation between the distributed
UI objects and app logic in a deterministic manner. Our proto-
type implementation has proved that FLUID achieves highly
flexible and transparent cross-device UI executions on a wide
range of unmodified, real-world apps, providing high respon-
siveness. We expect FLUID to accelerate the development of
creative and useful applications to provide a variety of novel
multi-device user experiences.

ACKNOWLEDGEMENTS
We thank our anonymous reviewers and shepherd for their
insightful and constructive comments that helped us im-
prove this paper. This work was supported in part by ERC
(NRF-2018R1A5A1059921) funded by the Korea Government
(MSIT). Steven Y. Ko was also supported in part by the fund-
ing from the National Science Foundation, CNS-1350883
(CAREER) and CNS-1618531.

REFERENCES
[1] Naser AlDuaij, Alexander Van’t Hof, and Jason Nieh. 2019. Hetero-

geneous Multi-Mobile Computing. In Proceedings of the 17th Annual
International Conference on Mobile Systems, Applications, and Services
(MobiSys ’19).

[2] Ardalan Amiri Sani, Kevin Boos, Min Hong Yun, and Lin Zhong. 2014.
Rio: A System Solution for Sharing I/O Between Mobile Systems. In
Proceedings of the 12th Annual International Conference on Mobile Sys-
tems, Applications, and Services (MobiSys ’14).

[3] Apple. 2019. MacOS Cocoa. http://developer.apple.com/technologies/
mac/cocoa.html.

[4] Apple. 2019. Welcome to Swift.org. https://swift.org/.
[5] Stuart K. Card, Allen Newell, and Thomas P. Moran. 1983. The Psy-

chology of Human-Computer Interaction. L. Erlbaum Associates Inc.
[6] Pei-Yu (Peggy) Chi and Yang Li. 2015. Weave: Scripting Cross-Device

Wearable Interaction. In Proceedings of the 33rd Annual ACMConference
on Human Factors in Computing Systems (CHI ’15).

[7] Pei-Yu (Peggy) Chi, Yang Li, and Björn Hartmann. 2016. Enhancing
Cross-Device Interaction Scripting with Interactive Illustrations. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems (CHI ’16).

[8] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and
Ashwin Patti. 2011. CloneCloud: Elastic Execution Between Mobile
Device and Cloud. In Proceedings of the Sixth Conference on Computer
Systems (EuroSys ’11).

[9] VNI Cisco. 2018. Cisco Visual Networking Index: Forecast and Trends,
2017–2022. White Paper (2018).

[10] ClockworkMod. 2019. Vysor. https://www.vysor.io/.
[11] The Qt Company. 2019. The Qt Framework. https://www.qt.io/.
[12] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman,

Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. MAUI:
Making Smartphones Last Longer with Code Offload. In Proceedings
of the 8th International Conference on Mobile Systems, Applications, and
Services (MobiSys ’10).

[13] Expedia. 2019. Expedia. https://www.expedia.com/app.
[14] Eclipse Foundation. 2019. The SWT Toolkit. http://eclipse.org/swt/.
[15] Genymobile. 2019. Scrcpy. https://github.com/Genymobile/scrcpy.
[16] Giuseppe Ghiani, Marco Manca, and Fabio Paternò. 2015. Author-

ing Context-dependent Cross-device User Interfaces Based on Trig-
ger/Action Rules. In Proceedings of the 14th International Conference
on Mobile and Ubiquitous Multimedia (MUM ’15).

[17] GitHub. 2019. The world’s leading software development platform -
GitHub. https://github.com/.

[18] Google. 2019. Chromecast. https://store.google.com/product/
chromecast.

[19] Google. 2019. Google Docs. https://www.google.com/intl/en-GB/
docs/about/.

[20] Google. 2019. Measure app performance with Android Profiler. https:
//developer.android.com/studio/profile/android-profiler.

[21] Google. 2019. YouTube. https://www.youtube.com.
[22] Mark S. Gordon, David Ke Hong, Peter M. Chen, Jason Flinn, Scott

Mahlke, and Zhuoqing Morley Mao. 2015. Accelerating Mobile Ap-
plications Through Flip-Flop Replication. In Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications, and
Services (MobiSys ’15).

[23] Mark S. Gordon, D. Anoushe Jamshidi, Scott Mahlke, Z. Morley Mao,
and Xu Chen. 2012. COMET: Code Offload by Migrating Execution
Transparently. In Presented as part of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 12).

[24] Sable Research Group. 2019. Soot - A Java optimization framework.
https://github.com/Sable/soot.

[25] Tom Horak, Andreas Mathisen, Clemens N. Klokmose, Raimund
Dachselt, and Niklas Elmqvist. 2019. Vistribute: Distributing Interac-
tive Visualizations in Dynamic Multi-Device Setups. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems (CHI
’19).

[26] Steven Houben and Nicolai Marquardt. 2015. WatchConnect: A Toolkit
for Prototyping Smartwatch-Centric Cross-Device Applications. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15).

[27] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. 2015. Versatile Yet
Lightweight Record-and-replay for Android. In Proceedings of the 2015
ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 2015).

[28] Twitch Interactive. 2019. Twitch. https://www.twitch.tv/.
[29] LiveMe. 2019. LiveMe - Live Broadcasting Community. https://www.

liveme.com/.
[30] Scott McLean, Kim Williams, and James Naftel. 2002. Microsoft .Net

Remoting. Microsoft Press.
[31] Zigurd Mednieks, Laird Dornin, G. Blake Meike, and Masumi Naka-

mura. 2011. Programming Android. Oreilly & Associates Inc.
[32] Matt Morley. 2013. JSON-RPC 2.0 Specification. https://www.jsonrpc.

org/specification.
[33] Michael Nebeling and Anind K. Dey. 2016. XDBrowser: User-Defined

Cross-Device Web Page Designs. In Proceedings of the 2016 CHI Con-
ference on Human Factors in Computing Systems (CHI ’16).

[34] Michael Nebeling, Theano Mintsi, Maria Husmann, and Moira Norrie.
2014. Interactive Development of Cross-device User Interfaces. In
Proceedings of the 32Nd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’14).

[35] Netflix. 2019. Netflix. https://www.netflix.com.
[36] T. Nguyen, J. Vanderdonckt, and A. Seffah. 2016. Generative Patterns

for Designing Multiple User Interfaces. In 2016 IEEE/ACM International
Conference on Mobile Software Engineering and Systems (MOBILESoft
’16).

[37] Jakob Nielsen. 1994. Usability Engineering.
[38] Paul Nikolich, C Lin, Jouni Korhonen, Roger Marks, Blake Tye, Gang

Li, Jiqing Ni, and Siming Zhang. 2017. Standards for 5G and beyond:
Their use cases and applications. IEEE 5G Tech Focus (2017).

[39] Thomas Nitsche, Carlos Cordeiro, Adriana Flores, Edward Knightly,
Eldad Perahia, and Joerg Widmer. 2014. IEEE 802.11ad: directional
60 GHz communication for multi-Gigabit-per-second Wi-Fi [Invited
Paper]. IEEE Communications Magazine (2014).

[40] Sangeun Oh, Ahyeon Kim, Sunjae Lee, Kilho Lee, Dae R. Jeong,
Steven Y. Ko, and Insik Shin. 2019. Supplement of "FLUID: Flexible
User Interface Distribution for Ubiquitous Multi-device Interaction".
http://cps.kaist.ac.kr/fluid/MobiCom19FLUIDSup.pdf.

[41] Sangeun Oh, Hyuck Yoo, Dae R. Jeong, Duc Hoang Bui, and Insik Shin.
2017. Mobile Plus: Multi-device Mobile Platform for Cross-device
Functionality Sharing. In Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys ’17).

[42] Oracle. 2018. JDK Swing Framework. http://docs.oracle.com/javase/
6/docs/technotes/guides/swing/.

[43] Seonwook Park, Christoph Gebhardt, Roman Rädle, Anna Maria Feit,
Hana Vrzakova, Niraj Ramesh Dayama, Hui-Shyong Yeo, Clemens N.
Klokmose, Aaron Quigley, Antti Oulasvirta, and Otmar Hilliges. 2018.
AdaM: Adapting Multi-User Interfaces for Collaborative Environments
in Real-Time. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ’18).

[44] Esmond Pitt and Kathy McNiff. 2001. Java.Rmi: The Remote Method
Invocation Guide. Addison-Wesley Longman Publishing Co., Inc.

[45] Guobin Shen, Yanlin Li, and Yongguang Zhang. 2007. MobiUS: En-
able Together-viewing Video Experience Across Two Mobile Devices.
In Proceedings of the 5th International Conference on Mobile Systems,

http://developer.apple.com/technologies/mac/cocoa.html
http://developer.apple.com/technologies/mac/cocoa.html
https://swift.org/
https://www.vysor.io/
https://www.qt.io/
https://www.expedia.com/app
http://eclipse.org/swt/
https://github.com/Genymobile/scrcpy
https://github.com/
https://store.google.com/product/chromecast
https://store.google.com/product/chromecast
https://www.google.com/intl/en-GB/docs/about/
https://www.google.com/intl/en-GB/docs/about/
https://developer.android.com/studio/profile/android-profiler
https://developer.android.com/studio/profile/android-profiler
https://www.youtube.com
https://github.com/Sable/soot
https://www.twitch.tv/
https://www.liveme.com/
https://www.liveme.com/
https://www.jsonrpc.org/specification
https://www.jsonrpc.org/specification
https://www.netflix.com
http://cps.kaist.ac.kr/fluid/MobiCom19FLUIDSup.pdf
http://docs.oracle.com/javase/6/docs/technotes/guides/swing/
http://docs.oracle.com/javase/6/docs/technotes/guides/swing/

Applications and Services (MobiSys ’07).
[46] S. B. Shneiderman and C. Plaisant. 2005. Designing the user interface.

Pearson Addison Wesley.
[47] Skia. 2019. Skia Graphics Library. https://skia.org/.
[48] Neil Smyth. 2012. iOS 12 App Development Essentials.
[49] Esoteric Software. 2019. Kryo. https://github.com/EsotericSoftware/

kryo.
[50] Monsoon Solutions. 2019. Monsoon power monitor. https://www.

msoon.com/.
[51] TeamViewer. 2018. TeamViewer - Remote Support, Remote Access,

Service Desk, Online Collaboration and Meetings. https://www.
teamviewer.com.

[52] Alexander Van’t Hof, Hani Jamjoom, Jason Nieh, and Dan Williams.
2015. Flux: Multi-surface Computing in Android. In Proceedings of the
Tenth European Conference on Computer Systems (EuroSys ’15).

[53] Jian Xu, Qingqing Cao, Aditya Prakash, Aruna Balasubramanian, and
Donald E. Porter. 2017. UIWear: Easily Adapting User Interfaces for
Wearable Devices. In Proceedings of the 23rd Annual International Con-
ference on Mobile Computing and Networking (MobiCom ’17).

[54] Jishuo Yang and Daniel Wigdor. 2014. Panelrama: Enabling Easy
Specification of Cross-device Web Applications. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’14).

[55] Sai Zhang, Hao Lü, and Michael D Ernst. 2012. Finding errors in
multithreaded GUI applications. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis. ACM, 243–253.

[56] Jiahuan Zheng, Xin Peng, Jiacheng Yang, Huaqian Cai, Gang Huang,
Ying Zhang, and Wenyun Zhao. 2017. CollaDroid: Automatic Aug-
mentation of Android Application with Lightweight Interactive Col-
laboration. In Proceedings of the 2017 ACM Conference on Computer
Supported Cooperative Work and Social Computing (CSCW ’17).

https://skia.org/
https://github.com/EsotericSoftware/kryo
https://github.com/EsotericSoftware/kryo
https://www.msoon.com/
https://www.msoon.com/
https://www.teamviewer.com
https://www.teamviewer.com

	Abstract
	1 Introduction
	2 Use Cases
	3 Background
	4 FLUID: System Overview
	4.1 Workflow
	4.2 System Design

	5 Selective UI Distribution
	5.1 Static Code Analysis
	5.2 Runtime Object Tracking
	5.3 Cross-device UI Re-creation

	6 Transparent RPC Support
	6.1 Transparent Function Call Interception
	6.2 Seamless RPC Execution

	7 Cross-device UI Replication
	7.1 UI Replication Overview
	7.2 UI Synchronization and Its Guarantee
	7.3 Duplicate Execution Suppression

	8 Implementation
	9 Evaluation
	9.1 Coverage Test
	9.2 Performance Test
	9.3 Network Optimization
	9.4 Power Consumption
	9.5 Compatibility

	10 Related Work
	11 Discussion
	12 Conclusion
	References

