
1

Supporting Flexible and Transparent
User Interface Distribution across Mobile Devices

Sangeun Oh, Ahyeon Kim, Sunjae Lee,
Kilho Lee, Dae R. Jeong, Steven Y. Ko, and Insik Shin, Member, IEEE

Abstract— The growing trend of multi-device ownerships
creates opportunities to use applications across devices. However,
the current methods of app development/usage remain in the
single-device paradigm, which is far below user expectations. For
example, it is currently impossible for users to dynamically par-
tition an existing app across different devices to utilize multiple
surfaces. We introduce FLUID, a novel multi-device platform that
supports simultaneous operation of multiple devices. FLUID aims
to i) distribute the user interfaces (UIs) of a single app across
multiple devices, ii) support unmodified legacy apps without extra
engineering, and iii) support numerous apps with customized UIs.
Previous approaches, like screen mirroring and app migration,
do not satisfy those goals altogether. However, FLUID is designed
to satisfy the goals. It can efficiently deploy UI objects to different
devices by identifying only UI states necessary for accurate
rendering. And FLUID can execute the distributed UI objects
by supporting cross-device method invocations transparently and
synchronizing the replicated UIs across devices. Furthermore,
FLUID automatically handles unexpected events that may de-
grade its usability by efficiently maintaining the distributed UIs
up to date. Our evaluation using 20 legacy apps shows that FLUID
can transparently support numerous apps and is fast enough for
interactive use.

Index Terms—Mobile and Ubiquitous Systems, Multi-device
Mobile Platforms, Multi-surface Computing, User Interface Dis-
tribution

I. INTRODUCTION

THE recent rapid development of IoT technologies has
changed our lives completely. Various smart devices such

as smartphones, tablets, home appliances, and even cars have
proliferated, and users now typically own multiple devices.
According to a survey [1], each US household has an average
of 11 connected devices, with seven being equipped with
screens of various sizes and shapes. Such a trend can change
user–device interaction; that is, in the near future, users will
be able to interact with a single application using multiple
screens (i.e., multiple surfaces) on different devices. Therefore,
it is unsurprising to foresee the paradigm shift of mobile

This work was supported in part by the National Research Foundation of
Korea (NRF) grants (NRF-2021R1F1A1063785, NRF-2021R1A4A1032252,
and NRF-2018R1A5A1059921), and the Institute for Information & Commu-
nications Technology Planning & Evaluation (IITP) grant (IITP-2023-2018-
0-01431 and IITP-2023-RS-2022-00156360). Steven Y. Ko was supported in
part by the NSERC Discovery grant (RGPIN/04061-2021).

S. Oh is with the Department of Software and Computer Engineering, Ajou
University, Suwon 16499, South Korea (e-mail: sangeunoh@ajou.ac.kr).

A. Kim, S. Lee, D. R. Jeong, and I. Shin are with the School of Com-
puting, KAIST, Daejeon 34141, South Korea (e-mail: {nonnos, sunjae1294,
dae.r.jeong, insik.shin}@kaist.ac.kr).

K. Lee is with the School of AI Convergence and Dept. of Intelligent
Semiconductors, Soongsil University, Seoul 06978, South Korea (e-mail:
khlee.cs@ssu.ac.kr).

S. Y. Ko is with the School of Computing Science, Simon Fraser University,
Burnaby V5A 1S6, BC, Canada (e-mail: steveyko@sfu.ca).

Insik Shin is a corresponding author.

What just happened?

Nice Goal!!

Single Surface Multi Surface

Host device Guest device

No name
Goal!!!!!

User 1
What a goal

Nickname
Wow!!!

No name
Goal!!!!!

User 1
What a goal

Nickname
Wow!!!

Fig. 1. Example scenario for a live streaming app. Multi-surface computing
allows a user to enjoy a live broadcast on a full screen without overlapping
with a keyboard UI.

device usage from single-surface computing to multi-surface
computing in the era of IoT.

With the ownership of multiple devices, many useful and
interesting use cases can be envisioned for multi-surface
computing. Specifically, such interaction environments can be
more attractive owing to the following three driving factors.
i) Multi-function: Various functionalities provided by a single
app can be placed on multiple devices, thereby facilitating the
simultaneous use of several functionalities. For example, as
shown in Fig. 1, if a user can deploy the chatting function
of a live streaming app to a different device, the user can
enjoy both watching live broadcasting and communicating
with other viewers more conveniently at the same time. ii)
Multi-device: Various tasks can have different preferences
for devices depending on their use because each device has
distinct form factors. For instance, a user can control a video
progress bar using their smartphone while watching a movie
on the big screen of a smart TV. This provides easier and richer
controls compared to using a TV remote controller. iii) Multi-
user: Multiple users can work together on their own devices to
easily accomplish a single task. For example, to reserve flight
tickets for a group of colleagues, a user can distribute input
fields to fill in personal information on the devices of their
colleagues. The colleagues can then easily offer the necessary
information (e.g., their passport number) on their own devices.

Unsurprisingly, there are existing solutions to support such
multi-surface computing, which can be classified into four
categories. The first is to use custom apps created for specific
multi-surface usages, such as continuous video streaming be-
tween devices (e.g., Netflix) and joint document editing among
users (e.g., Google Docs). However, as this approach was
only supported by custom apps, its applicability is extremely
limited. Second, previous studies [2], [3] have proposed new

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3349561

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 11,2024 at 03:55:31 UTC from IEEE Xplore. Restrictions apply.

2

programming models and/or development tools that add multi-
surface operations to existing apps to reduce the engineering
costs. However, they have limited applicability because they
cannot maintain the same look-and-feel for app-specific cus-
tom UIs. It is common practice to employ customized UIs
when developing mobile applications. In our analysis of the
top one hundred applications downloaded from the Google
Play Store, conducted in May 2018, we observed that all
apps customized their own UIs in an app-specific manner.
Third, screen sharing (or mirroring) or app migration can be
utilized to support unmodified legacy apps. The former is a
method of duplicating the screen of one device on another
device, usually with a larger screen or a higher resolution
(e.g., AirPlay [4], Chromecast [5]), whereas the latter is a
method for moving an app process to another device upon
runtime to employ a different display [6]. However, they come
with limited flexibility such that an app cannot fully exploit
the advantages of multi-surface environments. In particular,
through a screen-sharing technique, apps can display only the
same screen content on multiple surfaces. This is because
screen sharing is not provided at a more fine-grained level,
such as displaying different UI elements on external devices.
On the other hand, the app migration can allow an app to
employ only one surface at a time instead of using multiple
surfaces together. This indicates that it is impossible for an
app to separate a video stream and a video progress bar to a
smart TV and smartphone, respectively, using app migration.

In this paper, we introduce FLUID (FLexible UI
Distribution)1, a novel multi-surface platform that performs
beyond the limitations of previous solutions. Our system has
the following design requirements. i) Flexibility: It should
support a fine-grained unit of distribution across devices so that
users can utilize multiple surfaces with maximum flexibility.
ii) Ease of development (transparency): It should support
unmodified legacy apps and not impose any extra overhead
for creating multi-surface apps, as compared to single-device
app development. iii) Applicability: It should support a broad
range of applications, including apps with various customized
UI elements. iv) Responsiveness: The responsiveness must be
high to handle user inputs promptly on multiple devices. Note
that users expect responses to their inputs to be offered within
50 to 200 ms on an average [7]–[9].

To meet the above design requirements, FLUID enables the
migration or replication of individual UI elements, dynami-
cally selected by users, from one device (the host) to different
devices (guests). Users can then interact with the UI elements
on all or some of the devices. Accordingly, we address the
following five technical challenges. i) UI partitioning and
distribution: FLUID identifies a minimal-yet-complete set of
UI objects and their associated graphical states necessary to
render selected UI elements by carefully analyzing the UI
source code of both the Android platform and target app.
Subsequently, based on the analysis results, FLUID distributes
the selected UIs to multiple devices. Applying local rendering
on each device is suitable for mobile wireless environments
because it reduces the network bandwidth required for UI
distribution and considerably minimizes the number of round-
trips in the network. ii) Transparent distributed UI execution:

1See https://www.youtube.com/watch?v=uyoOW6Pmunw for our demo
video.

Even if the selected UIs are distributed, the target app must
be executed completely as before by maintaining cooperation
between distributed states (UI objects and graphical states)
and remaining states. To achieve this, FLUID changes the
local method calls to remote procedure calls (RPCs) to sup-
port transparent cross-device execution for existing apps. iii)
UI state synchronization: When a user replicates a single
UI element across different devices and interacts with it
simultaneously, FLUID guarantees the overall accuracy of the
replicated UI elements by synchronizing all relevant UI states.
It enables FLUID to offer an option of replicating UIs for
greater flexibility. iv) Runtime change handling: When the
UI layout of an app changes owing to changes in the device
configuration, distributed UIs should accordingly be able to
maintain their states up to date. To this end, FLUID automati-
cally identifies new UIs visually similar to the distributed UIs
through their pixel similarity and redeploys them to the guest
device with a small data transmission. v) Seamless network
fault handling: When a network fault occurs during a multi-
surface interaction, it should be properly handled to avoid any
unexpected side effects on both the host and guest devices.
FLUID seamlessly restores the distributed UIs on the host
device without disrupting their execution flows.

To validate the concept of FLUID, we implemented an
Android-based FLUID prototype using Google Pixel XL smart-
phones and Pixel C tablets. Through an evaluation using 20
legacy apps, we show that FLUID can support various new
multi-surface use cases while providing high flexibility and full
transparency. In addition, our network and power consump-
tion experiments show that FLUID can significantly optimize
network usage compared to different approaches (e.g., screen
mirroring and app migration) for high responsiveness, thereby
reducing power consumption.

II. USE CASES

This section presents three categories of use cases to de-
scribe how FLUID can provide users with better user experi-
ences. The current working prototype of FLUID supports these
use cases using unmodified legacy apps.

Better usability. FLUID can provide a useful method to
utilize multiple surfaces under various scenarios because it
enables users to dynamically deploy UI elements to suitable
devices in terms of usability, based on the screen sizes,
available input methods, and other factors. For example, with
most live-streaming apps, users can watch a live broadcast
using a video UI while chatting with other viewers using a chat
UI. However, at this time, because the chat UI with a virtual
keyboard is usually placed over the video UI, inconvenient
situations can often occur in which more than half of the video
UI is covered on a smartphone display. This can significantly
reduce the usability of the app, and users might not see
important scenes, such as a scoring play in a live soccer
broadcast. FLUID allows a user to enjoy chatting on one
device while watching live broadcasts on another device by
distributing the video and chat UIs to different devices. In
addition, there are many difficult tasks to perform when using
only a single screen, such as precisely controlling a video
player’s progress bar with a smart TV remote or entering a
destination on a navigation app’s search input box from the
rear seat of a car. Under these situations, FLUID enables a

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3349561

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 11,2024 at 03:55:31 UTC from IEEE Xplore. Restrictions apply.

3

La
yo

ut

W
id

ge
t

UI Tree

UI Object

App logic

Rendering

Graphical
States

Non-graphical
states

ClassA obj1

ClassB obj2

ClassC obj3

ClassD obj4

ClassE obj5

ClassF obj6
TextEdit √

Button1 Button2

App

U
I E

le
m

en
t

Fig. 2. Android UI framework

user to simply replicate the progress bar or the input box to a
smartphone to utilize the benefits of the handheld device.

Collaborative use. In general, it is uncommon for multiple
users to collaborate on a single task because of the limita-
tion of output sharing (e.g., screen sharing [5], [10], [11]).
Only a few cloud-based web applications (e.g., Google Docs)
provide input collaboration features that allow multiple users
to simultaneously provide input for the same task. However,
FLUID facilitates transformation of an Android app into a
collaborative app to support both output sharing and input
collaboration. For instance, when entering personal informa-
tion to reserve flight tickets for a group of colleagues, it
could be extremely inconvenient for each colleague to enter
their information in sequence on a single device (e.g., as the
Expedia app expects [12]). FLUID allows a user to deploy input
boxes for personal information to each colleague’s device and
enter the information parallelly.

Privacy protection. In many cases, there are risks of private
information being leaked while sharing information across
multiple devices through screen mirroring or app-level sharing.
For instance, when mirroring a smartphone screen to a smart
TV in a meeting room, a user may have to open a pattern lock
of the smartphone or log into an application. Under such a
situation, the user may unintentionally expose his lock pattern
or password to other colleagues through a mirrored screen.
As another example, when viewing a specific photograph or
email content with colleagues on a smart TV, a user may have
to expose all photographs or a full email list as well. With
FLUID, the user can selectively distribute specific UI elements
to show a specific photograph or email content to the smart
TV while protecting the remaining UI elements (such as the
list UI of emails or photographs) on the user’s smartphone.

III. BACKGROUND

We target Android apps based on graphical user interfaces
(GUIs) to realize the design space for FLUID. Therefore, the
Android UI framework operation must be understood deeply,
particularly the organization and rendering of UI elements of
Android apps. In this section, we describe a brief background
while defining some terminology used in our paper.

UI architecture. Fig. 2 illustrates that a GUI-based ap-
plication contains various UI elements, such as buttons and
text input boxes; one UI element is the smallest logical unit
through which users can interact with an app from a user’s
perspective. Android provides two types of UI objects, widgets
and layouts, and manages them in a single tree structure
(called a UI tree) for each app. A widget is a graphical object
connected to a UI element (e.g., a button) through one-to-one

mapping, and the layout is a container object that determines
how child UI objects are located on their screen. Each UI
object has two categories of states: i) graphical states, which
are the data used during the UI rendering process of Android
(e.g., text, image, color, and animation), and ii) non-graphical
states, which include the remaining data primarily used by
app logic (e.g., event listeners), not related to rendering. Note
that the graphical states are typically represented as memory
objects, which are particularly defined as UI resource objects
(UI resources). Thus, each UI element is logically associated
with a collection of UI objects and their UI resources.

UI thread. It is a special thread that manages the UI tree
while updating the states of all UI objects in each app. For
instance, when a user presses a button, the UI thread executes
an event handler connected to the UI object. The event handler
then updates some graphical states (e.g., color) of the button
or other UI objects. Note that these actions are typically
performed using local method invocations, following the OOP
encapsulation principle.

Renderer thread. This is a special thread that renders all UI
objects in each app. When the UI thread completes updates
of all UI objects and requests to render them, the renderer
thread executes some methods related to rendering (e.g.,
measure(), layout(), and draw()) while traversing the
UI tree from its root to leaf nodes. We describe this process
in more detail in Section V-A.

IV. FLUID: SYSTEM OVERVIEW

To support the multi-surface scenarios described in Sec-
tion II, we propose FLUID, which is a system-level solution
that enables users to interact with a single unmodified app
by utilizing multiple surfaces simultaneously. We adopt a UI
element, which is the smallest logical unit through which users
can interact with an app, as the unit of distribution to flexibly
utilize multiple surfaces. This section presents the workflow
and system design overview of FLUID.

A. Workflow

Figure 3 illustrates the three-phase workflow of FLUID.
Pairing phase. First, FLUID forms a pairing among trusted

devices (host and guest devices). The host device discovers
and lists connectable guest devices nearby. The user selects
the desired guest devices from the list along with a set of
target apps for multi-surface interactions. The host device then
securely establishes a network connection with the guests and
transmits package files (APKs) of the target apps to the guests.
Note that as long as the APK files are not updated on the host
device, such a transfer process is not required.

UI distribution phase. FLUID provides an intuitive inter-
face using multi-finger-tapping gestures2, allowing a user to
directly select UI elements to be distributed from a single
app. When a user triggers the UI distribution for a host app,
FLUID splits its UI tree into two parts: a subtree that includes
the UI elements chosen by the user and the remaining UI
tree. The subtree consists of a UI layout and widget objects
along with their graphical resources. Upon completing the UI
tree partition, FLUID forwards the selected subtree to each

2Our demonstration video shows how a user triggers a UI distribution.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3349561

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 11,2024 at 03:55:31 UTC from IEEE Xplore. Restrictions apply.

4

(a) Piaring Phase

Host device Guest device

App
packages

App
data

App
code

UI tree
UI tree

Host app FLUID wrapper app
Select

UI elements

Host device

UI tree

Host app

UI thread

Guest device

FLUID wrapper

UI thread

Host device Guest device

App
packages

App
packages

copy

(b) UI Distribution Phase (c) UI Interaction Phase

Rendering

UI tree

Rendering Rendering

UI update by
function call

UI update
by RPC

Migrate

User inputRequest

Fig. 3. FLUID architecture and workflow overview

guest device. On a guest device, FLUID launches a generic
wrapper app to re-create the received UI subtree and related
UI resources and displays the corresponding UIs with the same
look-and-feel as the host side through local rendering (called
as guest UI elements).

UI interaction phase. When guest UIs are successfully
displayed on the guest surface, FLUID enables the user to
interact with the host app by utilizing host and guest UIs
concurrently, as if all UI elements are placed on the same
device. For example, the user can control the video progress
bar on a guest device to search for a specific scene of a video
clip to be displayed on a host device. This scenario requires
host-side app logic and guest-side UI objects to cooperate with
each other across devices. Therefore, FLUID supports such
cross-device cooperation by transforming local function calls
to cross-device RPCs in a transparent manner.

B. System Design
We designed FLUID to support the multi-surface execution

model by solving the following challenges:
C1. How can UI objects be split and distributed efficiently

while minimizing communication between devices?
C2. How can we support the interaction between app logic

and the distributed UI objects in a transparent manner?
C3. How to guarantee app consistency when replicating UI

objects across multiple surfaces?
C4. How to keep guest UIs up-to-date when a host app

replaces the existing UI layout with a new layout because
of changes to the device configuration?

C5. How to deal with unexpected network disconnections
between devices during multi-surface interactions?

C1. As shown in Fig. 4, the primary design idea of FLUID
is to split and distribute UI objects while minimizing commu-
nication cost between devices. We observed that a rendering
process is frequently applied (e.g., 20–30 fps), and its result
includes a considerable amount of pixel data. Based on this
observation, we designed FLUID to display guest UI elements
through local rendering on a guest device. This design enables
rapid UI distribution because cross-device communication is
not required during each rendering process. In particular, this
is suitable for mobile environments, considering that their
wireless networks often have a high latency, low bandwidth,
and unstable connectivity. Also, FLUID reduces a large amount
of network usage and minimizes the number of network round-
trips. Therefore, FLUID can provide a better responsiveness
than screen mirroring techniques, which renders all device sur-
faces only on the host device (as discussed in Section XI-C).

App logic

UI Object A UI Object B

Rendering

Host app

Platform

Rendering

Platform

FLUID wrapper app

User
Input

UI update
By local function call

Fig. 4. UI partition and distribution

To enable this design, FLUID aims to identify a minimal-
yet-complete set of UI objects and their related UI resources
required when rendering the selected UIs, and then distribute
only the set to the guest side. For stock Android UIs, it is
trivial to find such a set because their related UI resources
have already been published as open-source code. However,
the same approach cannot be applied to the case of app-
specific custom UIs since it is not publicly known which UI
resources they use. To address this problem, we utilize static
code analysis and runtime object tracking to identify such a
set carefully without incurring any false-negative errors. This
method allows FLUID to support custom UI elements while
maintaining their original look and feel, which is unattainable
by the up-to-date methods applying UI distribution [2], [3].

C2. FLUID aims to support legacy apps and transparently
conduct multi-surface operations by providing the program-
ming abstraction of a single device. When a user interacts with
an application through multiple devices, cooperation between
the host app logic and guest UI objects should be maintained
as if they are running on the same device. In particular, when a
user input is provided from a guest surface, the graphical states
of the guest UI objects should be updated depending on the
host app logic or some functionalities of the host app should
be triggered. For instance, if a user touches a video display
window when its video clip is paused, the corresponding UI
object triggers a proper event listener to handle the touch event.
Next, the listener resumes the video clip and synchronizes
a progress bar with it. Fundamentally, such cooperation is
achieved through local function calls, which are performed
within the same address space. Thus, to support extended
cooperation between devices, FLUID transforms local function
calls into cross-device RPCs in a transparent manner, while
solving some technical issues, including 1) function call inter-
ception and RPC transmission, and 2) seamless cross-device
RPC execution (as described in Section VI). This allows FLUID
to support legacy applications without any modification on

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3349561

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 11,2024 at 03:55:31 UTC from IEEE Xplore. Restrictions apply.

5

their source code, thereby maximizing its applicability.
C3. FLUID provides users with another option of replicating

some UI elements across multiple devices to provide better
flexibility. For instance, a user can replicate a video progress
bar on both a smart TV and a smartphone when watching
a video image on the former. This replication allows the
user to easily control the video clips from both devices. To
achieve this, FLUID guarantees that it applies all updates to
replicated UIs in a deterministic manner to synchronize their
graphical states. This implies that FLUID triggers and executes
all updates to the replicated UIs on all devices in the same
manner and order. Its details are described in Section VII.

C4. FLUID should be able to keep guest UIs up-to-date, even
if the device configurations change. When a device changes
its configuration, such as screen rotation, screen resizing, and
language switching, a mobile app can usually apply a new
UI tree at runtime to provide better usability to users. For
example, if a smartphone’s orientation changes from portrait to
landscape, a running host app (e.g., video player) may replace
an existing UI tree with a new tree designed for landscape
mode. During this process, the app removes all UI objects of
the old tree and instantiates new UI objects to construct the
new tree. When the UI tree replacement is complete, the UI
objects on the guest device become invalid, indicating that the
guest UIs should be removed and re-created. Such runtime
changes can occur more often than expected. For example, to
search for and watch videos on YouTube, users tend to change
the orientation of their devices every 3 min on average [13].

To address this, FLUID should seamlessly and efficiently
update guest UIs according to runtime changes. Otherwise, the
usability of this multi-device system may be severely degraded
because a user has to manually redo the UI distribution step
for every change in runtime. For seamless runtime change han-
dling, FLUID automatically identifies new UIs visually similar
to the guest UIs based on pixel similarity and redistributes
them to the guest device. An important technical issue with
this approach is to minimize the delay in identification and
redistribution for better usability. To this end, FLUID also
proposed several optimization techniques.

C5. FLUID aims to provide seamless network disruption
handling between the host and guest devices to avoid un-
desirable side effects. The host and guest devices could be
unexpectedly disconnected at any time for various reasons
(e.g., unreliable wireless signals and battery depletion). Such
a situation may lead to severe problems with multi-device
usability. For example, the host app may crash because co-
operation with a guest UI is not successfully achieved. In this
case, users have no choice but to forcibly kill the session of the
host app. Moreover, guest UIs may continue to waste resources
(e.g., memory and power) despite no communication with
the host. To solve this issue, FLUID seamlessly restores the
guest UIs on the host device in response to the disconnection,
allowing the host app to maintain its execution without any
problems. In addition, FLUID properly cleans the residuals of
the guest UIs to avoid wasting resources.

V. SELECTIVE UI DISTRIBUTION

In this section, we describe how FLUID partitions and dis-
tributes the UI elements. FLUID provides high responsiveness
by deploying a minimal-yet-complete set of UI objects and

their relevant resources necessary for rendering. To support
this, our system uses static code analysis and runtime object
tracking to identify such a set on the host side and applies a
cross-device UI re-creation on the guest side.

A. Static Code Analysis
Before distributing UI elements, FLUID thoroughly analyzes

target apps through a static code analysis to identify a candi-
date set of UI objects and their UI resources that the renderer
thread may access. For UI rendering, the renderer accesses the
UI resources of each UI object while performing the following
rendering functions: i) measure() to determine the size of
each UI element, ii) layout() to determine the position of
each UI element, and iii) draw() to draw each UI element.

To identify the UI resources of each UI object, FLUID
leverages a static analysis technique called the class hierarchy
analysis (CHA) through Soot [14], an open-source static
analysis tool. CHA generates an exhaustive call graph, where
each call site refers to all possible class methods that can be
invoked. To do so, CHA analyzes all possible class types that
each call site object can have according to the class hierarchy
relationship (i.e., the declared type of each call site object
and each of its children types). However, the current CHA
implementation of Soot cannot be applied directly to identify
UI resources for the following reasons: i) it is designed for
general programs that have an entry function, such as main()
(which Android apps do not have), and ii) it is designed to
analyze an entire program rather than only a specific part.

Thus, we developed FLUID to utilize CHA in three ways.
First, FLUID synthesizes a dummy program with a main()
function, which is used as input for Soot. Second, FLUID
copies all classes, which are extracted from a target program
(i.e., an APK file) and from the platform library (because the
platform library defines stock Android UI classes) into the
dummy program. Third, FLUID adds a code that invokes the
rendering functions of the View class (the root UI class in
Android) into the main() function. Based on these methods,
Soot can properly execute the CHA starting from main() of
the dummy program. In addition, it can create an exhaustive
call graph that includes all UI objects and their resources that
are potentially reachable because all UI classes are derived
from View. From the call graph, FLUID can extract a candidate
list of all UI classes and UI resources that the target app may
use. Notably, because of the nature of CHA, this final list may
contain some false-positive errors, but they do not affect the
correctness; moreover, no false-negative errors will be found.

The analysis result for the same app does not change unless
it is updated. Thus, we can envision an execution model
in which a server (e.g., an app market server or a FLUID
service server) analyzes each app and puts the analysis result
into its APK file whenever its new version is released. We
confirmed that the size of the analysis results for 20 legacy
apps (described in Section XI-A) ranged from 163 to 236
Kbytes, increasing the size of their original APK files by 0.3%
to 13.2%. This is an affordable overhead when considering
the amount of storage attached to up-to-date smart devices.
Furthermore, we confirmed that when our analysis technique
is executed on a desktop with 8 cores and 64 GB of RAM,
the elapsed time ranges from 119 to 210 seconds for the 20
legacy apps.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3349561

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 11,2024 at 03:55:31 UTC from IEEE Xplore. Restrictions apply.

6

B. Runtime Object Tracking

FLUID aims to minimize the false-positive errors contained
in the analysis results through runtime object tracking. To
enable this, we modify a serialization library called Kryo [15]
according to our goals. Typically, when serializing a target
object, the current implementation of Kryo explores and se-
rializes all objects reachable from the target object dynami-
cally. Consequently, when FLUID employs Kryo without any
modification, it may even serialize objects unnecessary for UI
rendering (i.e., non-graphical states). Thus, we modify Kryo
such that FLUID serializes a minimum set of objects (i.e.,
UI objects and their resources) required to render guest UI
elements on a guest device. Considering that the UI objects
selected by a user act as input, the modified Kryo tracks the
UI resources, which are the member fields of each UI object,
based on the analysis results described in Section V-A. It can
effectively serialize only the intersection between the set of
reachable objects that Kryo encounters, while exploring at
runtime, and the set of reachable objects that our analysis
result includes.

C. Cross-device UI Re-creation

After transmitting the serialized UI resources to a guest
device, the FLUID wrapper app executing on the guest creates
the delivered UI subtree and the associated UI resources using
its own UI thread and performs local rendering to show
the guest UI elements. We use standard Android APIs to
dynamically generate UI elements. Furthermore, an app code
and other resource files (e.g., images and fonts) of the host app
are necessary to re-create customized UI objects. Accordingly,
the wrapper app dynamically extracts and loads them from the
APK file of the host app passing through the pairing phase.

VI. TRANSPARENT RPC SUPPORT

After deploying guest UIs on guest devices, the host app
logic and guest UIs must interact with each other. FLUID aims
to support the programming abstraction of a single device
for multi-surface operations to maximize applicability. Thus,
FLUID transparently extends inter-object function calls within
the same address space to cross-device RPCs, as shown in
Fig. 5(a). This section describes how FLUID supports parent
function call interception and seamless RPC execution.

A. Transparent Function Call Interception

Normally, a function is called by storing its arguments and
a return address in registers or the stack and by jumping to the
address of the function entry point. On virtual machine (VM)-
based systems, such as Android, the VM stores and manages
the entry point of each function. Thus, FLUID modifies the
Android VM (ART) and intercepts the function calls (see
Fig. 5(a)). The entry point address of a target function is
replaced with the code gadget address of FLUID, which trans-
parently converts local function calls into RPCs (more details
are provided in Section X). Upon intercepting a function call,
FLUID determines whether it should be handled as an RPC
by checking which device the corresponding UI resides in.
If the UI resides on the guest side, FLUID creates an RPC
message along with the arguments of the target function from

: App logic : Function call

A

C

(a) Migration (b) Replication

B

A

C

B B B

: UI object : Function call interception

Host Guest Host Guest

Migrated Replicated

RPC

RPC

RPC
Local call

Local call Suppression

Fig. 5. Transparent RPC support with migrated and replicated UI objects

the registers and stack and transmits it to a guest (callee)
device. The FLUID code gadget on the host (caller) device
then jumps to the return address of the target function upon
receiving a return value or an error code from the callee device.
However, if the UI only exists on the host side, FLUID jumps to
the original code of the function instead of generating an RPC
message. Although an interception can cause an unnecessary
performance overhead, in Section XI-B, we show that such
overhead is negligible.

B. Seamless RPC Execution
Even after intercepting local calls and transforming them

into RPCs, care must be taken to execute the RPCs properly.
Broadly, we address two problems for correctness. Although
the discussion in this study considers that a host is making an
RPC to a guest, it is equally applicable the other way round.
First, a problem occurs when a target function has reference-
type arguments, such as uniform resource identifiers, because
such references are only valid on the host device. To resolve
this, FLUID checks whether each argument is of a reference
or value type. If it is the former, FLUID copies the referenced
resource object to the guest device and allocates it with a
new reference. Then, FLUID on the guest side replaces the
reference-type argument with a new reference such that the
target function can access the allocated resource correctly on
the guest device. Second, when executing a target function,
it may access objects that do not reside on the guest device
(i.e., non-graphical objects). To enable such accesses, FLUID
employs virtual objects, which are proxy objects for real
objects existing on the host device. When the target function
accesses a virtual object, FLUID forwards it to the host device
through an RPC (see Fig. 5(a)).

VII. CROSS-DEVICE UI REPLICATION

To maximize the flexibility, FLUID provides users with an
option to replicate a UI element on multiple surfaces and
use it on all or some of the surfaces. For example, multiple
users can share the same UI element on their smartphones to
perform collaborative tasks, such as playing with a hidden
picture puzzle or filling out forms (e.g., inputting passport
numbers for a group flight reservation). In this section, we
explain how FLUID enables UI replication.

A. Overview of UI Replication
The basic mechanism for UI replication is the same as the

UI distribution and RPC mechanisms described in Sections V
and VI, respectively. This means that FLUID deploys the

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3349561

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 11,2024 at 03:55:31 UTC from IEEE Xplore. Restrictions apply.

7

UI objects and their resources necessary for rendering on
guest devices and uses RPCs to transform local method calls
into remote method calls whenever graphical states and non-
graphical states need to interact across devices. The differ-
ence here is that UI replication now displays and manages
replicated UI elements, as illustrated in Fig. 5(b). Therefore,
all devices (host and guest devices) now have a copy of
each (replicated) UI element and its graphical states, and
synchronize them across all devices. Accordingly, FLUID also
allows a user to interact with the replicated UI elements on
all or any of the surfaces.

To achieve this, FLUID implements a dual execution, where
it ensures that the replicated UI states are updated determin-
istically on every device (see Fig. 5(b)). A state of a UI
object is updated by executing a UI object method. Using
dual execution, FLUID invokes a UI object method both on
the local device that a user interacts with and on all other
devices containing replicas of the UI object. However, the dual
execution requires us to address two additional challenges,
UI state synchronization and duplicate execution suppression,
which we discuss in the remainder of this section.

B. UI Synchronization and its Guarantee
To synchronize the states of replicated UI objects and UI

resource objects, FLUID makes deterministic state updates
for replicated objects. In other words, FLUID enforces that
replicated executions at different devices are identical so that
they can produce the same UI states. In general, enforcing
deterministic execution requires identifying the sources of non-
determinism and enforcing the determinism on them. The
sources of non-determinism in a mobile system include thread
scheduling, user input, sensor input, network input, file reads,
inter-process communication, hardware specification, random
numbers, clock readings, and so on. A replication system that
enforces determinism must implement a mechanism to make
those non-deterministic events deterministic across multiple
devices. For example, a previous replication system for mobile
devices (Tango [16]) logs all non-deterministic events from a
“leader” device and forwards them to a “follower” device.
Unlike Tango, which provides full replication, FLUID focuses
on UI replication and employs a customized design suitable
for UI replication.

The replication design of FLUID leverages the following two
observations regarding the UI execution model of Android.
First, the Android UI system has only a single UI thread that
updates the states of all UI objects. Second, there is a single
input event queue that drives the execution of a UI thread.
In other words, the execution of a UI thread dequeues an
input event from the input queue and executes an event handler
associated with the input event. This execution model is not
specific to Android. Many UI systems, such as Swing [17],
Qt [18], and Cocoa [19], follow this execution model because
it avoids race conditions when updating the UI states [20].

Based on these observations, our UI replication forces
deterministic updates of the replicated UI states. More specif-
ically, we use two techniques, deterministic triggering and
deterministic execution, to deterministically apply all updates
to replicated objects (UI objects and UI resources) in the same
manner. The combination of these two techniques guarantees
the overall UI state synchronization because every aspect of a

UI state update (triggering and executing the update) becomes
deterministic.

Deterministic triggering of UI state updates. To enforce
the deterministic triggering of UI state updates, we ensure that
the host device imposes a total ordering of all UI updates, and
the guest devices simply follow the ordering from the host.
This would be easy if all UI updates were triggered by the
events from the host (e.g., user input on the host device),
since we would just need to make RPCs to guest devices
whenever there is a UI update to trigger the UI update on the
guest devices. However, our goal for UI replication is to allow
users to interact with replicated UI elements across multiple
devices, and the user input on a guest device can potentially
change the state of a UI object. Thus, we forward all user
input events from the guest devices to the host device, and the
host device enqueues the forwarded events to its input event
queue to process them. When there is a UI update, the host
device executes it locally and makes an RPC to each guest
device to trigger the execution of the UI update on the guests.
These local and RPC calls occur asynchronously from each
other to preserve user interactivity. In addition, we prevent the
UI thread running on a guest device (as part of the container
app) from updating replicated objects directly. This means that
the state of a replicated UI object on a guest device can be
updated only by the RPCs from the host.

In summary, the FLUID UI replication processes only two
types of input events: (i) all events in the host’s input event
queue (e.g., user input on the host), and (ii) user input events
from guests. All other events from guest devices are excluded
from processing because our goal is to enable UI interactions
on multiple surfaces. Because the host receives all user input
events from guest devices, its input event queue naturally
imposes a total ordering of all events that FLUID processes.
This mechanism ensures that we trigger the UI state updates
deterministically.

Deterministic execution of UI state updates. To execute
UI state updates deterministically, FLUID relies on the host
to supply non-deterministic values while executing a UI state
update. For example, consider a method call on a button UI
object that updates the state. The execution of the method call
might use a hardware-dependent value, such as IMEI. Because
different phones will have different IMEI values, we cannot
guarantee determinism if we use a local IMEI value while
executing this method. Thus, instead of moving objects with
non-deterministic values (e.g., hardware information, clock
readings, random numbers, or file reads), FLUID creates virtual
objects corresponding to them and always receives such values
from the host through RPCs. For instance, because most
hardware information is accessed by binder objects connected
to external system services, our basic mechanism can naturally
handle it by simply replacing binder objects with virtual
objects.

C. Duplicate Execution Suppression
As discussed, our UI replication makes the RPCs execute

the non-replicated parts of an app. Simultaneously, its original
UI residing in the host device also executes the non-replicated
parts. Unfortunately, this has an undesirable consequence of
a duplicate execution, in which a non-replicated method is
invoked multiple times owing to replicated executions on

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3349561

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 11,2024 at 03:55:31 UTC from IEEE Xplore. Restrictions apply.

8

D’

C’E

A’ B’

D

BA C

New UI Tree (Host) Old UI Subtree (Guest)

1) UI mapping
construction

2) Finding the
new guest
subtree

3) Updating the
old subtree

Fig. 6. Cross-device runtime change handling

different devices. For example, suppose a user replicates a
video playback control on a guest device from the host. When
the user clicks on a play button on either the host or guest
surface, FLUID arranges each device to update the graphical
state of the play button through a dual execution. Each device
then makes an individual RPC to the host app logic (which
is a non-replicated part) to start the video. However, this will
result in two calls, and the host app logic will end up toggling
the video status twice, which will pause the video instead of
playing it. To address this problem, FLUID caches the result
of a method execution and provides the cached result to an
RPC (see Fig. 5(b)).

VIII. CROSS-DEVICE RUNTIME CHANGE HANDLING

Once some device configurations (e.g., screen orientation)
are changed, a host app may replace its current UI tree
with a new one. In this case, FLUID aims to seamlessly
replace the UI subtree on the guest device without any user
intervention. To this end, FLUID automatically identifies new
UIs visually similar to the old guest UIs and redistributes
them to the guest side. With this approach, the delay must
be minimized because the UI distribution should be repeated
whenever runtime changes occur. This may cause significant
inconvenience to users, in contrast to the first UI distribution,
which is a one-shot cost to initiate a multi-surface interaction.
This section presents how to i) automatically identify new UI
objects to be redistributed, ii) minimize the UI identification
overhead, and iii) minimize the UI redistribution overhead.

A. UI Mapping Construction

In general, when device configurations are changed, mobile
apps typically tend to keep the overall look of their screen
as before. For instance, a video player (e.g., a VLC player)
shows common buttons for video control, such as play or
forward, in both portrait and landscape UI trees. Based on this
intuition, FLUID constructs mappings between the widgets of
UI trees to identify new UI elements that are similar to old
guest elements. A widget is a special UI object with graphical
content, from which we can extract RGBA pixels. As shown in
Fig. 6, FLUID calculates the pixel similarity between widgets
residing in the different UI trees (i.e., the old subtree on the
guest side and the new tree on the host side) based on the
Euclidean distance [21], [22], and identifies pairs of widgets
that have the highest similarity (i.e., UI mapping). If an old UI
widget cannot find proper UI mapping, FLUID asks the user
to reselect UI elements to distribute to the guest side.

B. UI Mapping Optimization
Although similarity-based UI mapping enables seamless

runtime change handling, the application of this method may
result in substantial delays. The first is a network delay for
transmitting the old guest widget pixel data to the host side
for the similarity calculation. To alleviate this problem, FLUID
precaches the latest graphical states of the guest widgets to
the host device when they are refreshed by the RPCs. This
method allows FLUID to calculate the pixel similarity without
transferring all pixel data because it can extract the pixels of
the guest widgets on the host side through rendering with the
precached data. FLUID precaches graphical states instead of
pixel data because such states contain rich information and
have a small size. In addition, the graphical states can enable
recovery from network faults (as described in Section IX).
Keeping the cache up to date can cause significant overhead
because it may require frequent network transmissions. How-
ever, precaching can run seamlessly in the background after the
guest UI changes. This allows FLUID to hide network delays
from users. Note that for UI replication, precaching is not
required because copies of the guest widgets already exist in
the host device and FLUID can extract pixels from them.

Another delay factor is the number of pixel similarity
calculations that increase with increase in the combination
of UI pairs. To alleviate such overhead, FLUID eliminates
unnecessary calculations by matching the identifiers of the
widgets. App developers often assign the same identifiers to
UI objects, even in different UI trees, as long as they are
used for the same function. Such a programming convention
allows FLUID to create UI mapping between widgets without
calculating the pixel similarity; if some widgets have the
same identifiers in both old and new trees, then FLUID can
immediately make mapping between them.

C. Cross-device UI Partial Update
After constructing UI mappings, FLUID finds the subtree

including the new target widgets and transmits it to the guest
side through the same UI distribution method described in
Section V. This step inherently entails non-negligible network
delays, which may cause significant inconvenience to users. To
mitigate such delays, FLUID transmits only the differences in
graphical states between the old and new subtrees, instead of
all data. Typically, UI widgets with a high visual similarity are
likely to have similar graphical states. Based on this intuition,
FLUID updates the old widgets placed on the guest device
identically to the new ones by applying only the differences
in graphical states between them. FLUID can also update all
layout objects in the same way as long as the new subtree has
the same hierarchy as the old one. The partial UI update works
as follows. Upon receiving graphical states from the host
device, the FLUID wrapper app creates a new guest subtree
to replace the old one. To do so, the wrapper app first updates
the old UI objects to make them identical to the new ones or
creates newly added UI objects. Subsequently, it constructs a
new guest subtree by linking these objects and displays them
through local rendering.

IX. SEAMLESS NETWORK FAULT HANDLING

Typically, traditional mobile systems require app developers
to directly implement app logic for handling network faults.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3349561

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 11,2024 at 03:55:31 UTC from IEEE Xplore. Restrictions apply.

9

In other words, when the connection to an external device
is abruptly lost, a mobile app responds by executing pre-
written exception handlers. However, this app-level approach
is not suitable for FLUID for the following two reasons: 1)
The multi-surface interaction of FLUID is transparent to the
apps; this indicates that a network fault during multi-surface
interaction cannot trigger the mobile app’s exception handlers
properly, leading to unexpected app crashes. 2) Most apps
respond to network faults in an explicit manner, such as by
displaying an error message or asking a user to reconnect
to the remote device. This can significantly disrupt the user
experience for multi-surface interaction because the continuity
of app usage is broken. For these reasons, FLUID has a new
system-level mechanism to handle network faults seamlessly,
without intrusive impact on app behavior.

Our system handles unexpected network faults through two
steps: fault detection and seamless fault recovery. For fault
detection, FLUID employs the heartbeat mechanism, which is
widely used in the network domain [23]. FLUID periodically
sends heartbeat messages to the guest wrapper app with a
regular interval, and then the wrapper app responds imme-
diately upon receiving the heartbeats. If the host side does
not receive any responses within a timeout threshold, or if
the wrapper app does not receive any heartbeat messages at
regular intervals, they consider it a dysfunction. In the current
FLUID prototype, we empirically set both the heartbeat interval
and time-out threshold to 100 ms.

For fault recovery, FLUID seamlessly restores all the guest
UIs to the host device, enabling the app to continue the
execution with the restored UIs. To this end, we should address
the following two issues. First, we need to bring the up-
to-date graphical states of all guest UIs to the host device
before the network fault; however, this is challenging because
it is impossible to predict when a network fault will occur.
To address this, FLUID uses the graphical states of the guest
UIs precached for pixel similarity calculation as checkpoint
data. When a network fault occurs, FLUID can restore the
guest UIs appropriately on the host device via the latest
checkpoint. Since the precaching is performed every time
each RPC function updates the guest UIs (as described in
Section VIII-B), this checkpoint-restore approach ensures that
the restored UIs have the same graphical state as the guest
UIs before the network fault. Second, when a network fault
occurs during RPC execution, FLUID should be able to roll
back the execution context of the host app to the state before
the RPC function was invoked. And then, it should invoke the
original local function corresponding to the RPC function to
continue the execution of the host app. To this end, FLUID
halts the host app from waiting for the RPC function to return
and restores its registers and call stack to the state prior to
the RPC invocation. FLUID then sets the value of the program
counter to the entry address of the corresponding local function
to invoke it. This allows the host app to continue its execution
seamlessly without the app crashing or interrupting.

X. IMPLEMENTATION

We implemented a working prototype of FLUID by adding
new system components to Android or extending its existing
system components. In particular, we modified the Kryo library
to serialize and restore UI objects and UI resources based on

static analysis results while adding it as a system feature to
Android (2,399 LoC). We have extended the Android Java
framework to manage distributed UI subtrees and event queues
of UI threads across multiple devices (1,766 LoC). Moreover,
we added a special code gadget that consists of C++ native
code and ARM assembly code to Android VM (i.e., ART)
to transparently hijack the control flows (1,874 LoC). We
also added a system service to manage network connections
between devices (1,687 LoC). This section focuses on im-
plementation details only for the special code gadget added
to ART, which is one of the main techniques to enable a
transparent cross-device RPC and seamless dual execution.

Function call interception. To transparently intercept local
function calls, as described in Section VI, we significantly
revised the Java class loader of Android ART. When a Java
class is loaded into memory, the class loader of Android ART
generates ArtMethod objects that manage the metadata of
each function belonging to the class. The class loader then
stores the entry point of each function in each ArtMethod
object. At this point, to capture invocations to each function
later, we configure the entry point of each function to the
address of the FLUID code gadget in advance.

Function return interception. As mentioned in Sec-
tion VII-C, FLUID uses the link register (LR) that stores the
return address of the function to record a result value returned
from a function. After intercepting a call to the target function,
FLUID stores the address of its code gadget in the LR and
jumps to the original entry point of the target function. After
completing the execution of the function, the control flow is
returned to the code gadget address stored in the LR. FLUID
can then successfully intercept the return value passed by the
target function.

Conflict with garbage collector. The primary issue encoun-
tered when implementing the FLUID code gadget is conflicting
with a garbage collector (GC) executed in Android ART. When
a call to the target function is intercepted, the assembly part
of the code gadget first stores the context information (e.g.,
general registers) of its caller on the stack. Then, the code
gadget performs computation to determine certain aspects,
such as where the call should be forwarded and whether the
call is related to a replicated UI object. Java VMs (e.g., Dalvik)
typically manage two separate stacks, one for the Java region
and the other for the native region, whereas Android ART
maintains a unified stack for those two regions. This unique
characteristic of ART may induce conflicts with the FLUID
code gadget when the GC walks through the stack to check
Java objects in the heap. Specifically, unexpected errors may
occur because the GC cannot parse some stack frames of the
native region, which are created by FLUID to save context
information. To solve these error situations, we modified the
ART GC such that it can identify and skip the stack frames
generated by the FLUID code gadget. This allows the GC to
walk through the Java stack frames without errors.

XI. EVALUATION

We implemented a working prototype of FLUID to demon-
strate and evaluate its functionality, i.e., selectively distributing
the UIs of legacy apps to multiple devices and supporting
cross-device cooperation between the distributed UIs and app
logic transparently.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3349561

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 11,2024 at 03:55:31 UTC from IEEE Xplore. Restrictions apply.

10

Type User case scenario
Custom UI

type

App name

(Downloads)

FLUID App

migration

size

(Kbytes)

Network

round-trip

Arg.

(bytes)

Ret.

(bytes)

UI distribution

size (Kbytes)

Usability

Edit text on different device Edit Text
Color note (100M) 1 0 0 8.7 16,500

Text editor (1M) 1 587 0 35.8 46,100

Control media with different

device

SeekBar,

Button

VLC Player (100M) 1 14 0 998.5 38,000

Music Player (0.5M) 1 128 0 358.4 18,700

Control painting tool

with different device

Scroll, Button,

Image

PaperDraw (10M) 1 666 0 2,026.1 21,300

Paint (1M) 1 1,602 0 272.5 63,400

Chatting with different device

while broadcasting

Edit Text,

Button

LiveMe (50M) 2 72 1 45.3 85,600

Afreeca TV (10M) 5 8 1 234.3 43,000

Search destination with different

device

Edit Text,

Button

Naver map (10M) 1 67 1 37.9 199,000

Maps.me (50M) 1 0 1 126.1 94,500

Read document with different

device
Text, Scroll

File Viewer (1M) 0 0 0 8.9 11,700

Bible KJV (10M) 0 0 0 20.7 97,200

Privacy

Login with personal device Edit Text
Instagram (1B) 1 5 1 12.5 45,900

PayPal (50M) 1 94 0 19.6 54,000

Unlock pattern with personal

device
Pattern

Smart AppLock (10M) 1 8 0 3.6 29,600

AppLock (10M) 1 8 0 106.3 67,500

Sharing photo to public device Image
Gallery (10M) 0 0 0 182.9 51,200

A+ Gallery (10M) 0 0 0 362.8 66,300

Collabo.

Use
Fill in information collaboratively Text, Edit Text

eBay (100M) 1 55 1 62.9 73,500

Booking.com (100M) 1 67 1 97.7 93,000

TABLE I
USE CASE LIST FOR COVERAGE TEST. ”CUSTOM UI TYPE” IS A SUPER CLASS OF DISTRIBUTED UI. ”ARG.” AND ”RET.” INDICATE THE MAXIMUM

AMOUNTS OF DATA TRANSFERRED FOR THE ARGUMENTS AND RETURN VALUES OF RPCS, RESPECTIVELY.

The FLUID prototype was implemented based on the Oreo
version (v.8.1.0) of the Android Open Source Project (AOSP)
and ported to two types of devices: a Google Pixel XL
(smartphone) and Pixel C (tablet). During our evaluation, we
set all cores of the experimental devices to operate at the
maximum CPU frequency (2 × 2.15GHz & 2 × 1.6GHz). In
addition, all devices were connected to the same Wi-Fi access
point, which has a throughput of 45 Mbps and a round-trip
time with a median, average, and standard deviation of 32.1,
42.9, 40.31 ms, respectively.

A. Coverage Test

We first explored how well FLUID can support unmodified
legacy applications using the 10 use-case scenarios described
in Section II. We used two legacy apps downloaded from the
Google Play store for each use-case scenario. Table I lists
the use cases and legacy apps used in the coverage test. We
observed that all 20 legacy apps have their own custom UI
elements, and FLUID supports them for a successful display on
multiple surfaces of heterogeneous devices: phone-to-phone,
tablet-to-phone, and phone-to-tablet.

The ”network round-trip” column in Table I indicates the
maximum number of data transfers between the host and
guest devices while executing a single method on the guest
device in each use case. It is notable that the number of
cross-device communication ranges from only 0 to 5, and is
mostly 1; in addition, no communication occurred for the use
cases without a user input (e.g., Gallery and File Viewer).
This means that FLUID can minimize the number of network
round-trips because its selective UI distribution method has
successfully divided a complete set of UI objects and their
resources (as described in Section V).

The ”UI distribution size” column indicates the amount of
data transferred by FLUID for UI migration or replication.
The ”app migration size” column indicates the amount of
data in memory (i.e., code, data, stack, and heap) allocated
by each app immediately after launching it (i.e., when its
memory usage is at its least). Note that we measured the data
using the Android Profiler tool [24]. Because app migration
techniques, such as Flux [6], transfer the entire memory of
an application to another device, this measurement can serve
as a lower bound on the amount of data transfers when we
attempt to utilize the app migration techniques. Consequently,
we confirmed that the data transfer size for app migration
is incomparably larger than that of the UI distribution. This
means that FLUID transmits an extremely small portion of the
total app memory by identifying a minimal-yet-complete set
of UI resources to support an efficient UI distribution.

B. Performance Test

We quantitatively evaluate the performance of FLUID for
its multi-surface operations. We repeated each experiment ten
times with each configuration.

UI distribution time. We evaluated the performance of
FLUID in placing UI elements on a guest device by measuring
the UI distribution time, which is defined as the elapsed time
from when a user triggers the UI distribution to when the last
screen update on the guest side is completed. Therefore, it
includes the time required for network transmission and screen
rendering. Fig. 7 shows the breakdown of the UI distribution
time measured for the 20 legacy apps. The distribution time
ranges from 132 to 735 ms according to the types of UI
elements distributed from each app because each UI element is
associated with different sets of UI objects and their resources

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3349561

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 11,2024 at 03:55:31 UTC from IEEE Xplore. Restrictions apply.

11

0

100

200

300

400

500

600

700

800
D

is
tr

ib
ut

io
n

Ti
m

e
(m

s)
Serialization Network Activity launch Restoration Rendering

Fig. 7. UI distribution time of FLUID

0

50

100

150

200

250

300

M
irr

or
in

g

FL
U

ID

M
irr

or
in

g

FL
U

ID

M
irr

or
in

g

FL
U

ID

M
irr

or
in

g

FL
U

ID

M
irr

or
in

g

FL
U

ID

TextView ImageView ToggleButton SeekBar ProgressBar

R
es

po
ns

e
Ti

m
e

(m
s)

Encoding RPC serialization Network Decoding RPC execution Rendering

Fig. 8. UI response time of FLUID

required for rendering. The result shows that FLUID distributes
UI elements to another device sufficiently fast to support
interactive use.

Notably, the serialization process incurs a large overhead
in many cases. As described in Section V, we modified the
Kryo serialization library [15] in our FLUID working prototype.
Although our modification minimizes the number of data on
serialized objects, the serialization overhead remains high.
We observed that there are some opportunities to optimize
the performance of Kryo, such as removing deep recursions
included in its original implementation, which likely can
significantly reduce the performance overhead. Alternatively,
we expect that using different serialization libraries that are
more optimized for performance can also solve this issue.

UI response time. To evaluate the responsiveness of UIs
distributed on a guest device, we measured the UI response
time, which is defined as the elapsed time from when a user
touch input is provided on the guest surface to when the result
of the touch input is displayed on the guest surface. Fig. 8
shows the average UI response time taken by FLUID to update
the five most popular UI widgets compared to an open-source
screen mirroring program, SCRCPY [11]. The main factor
that affects the UI response time of FLUID is the size of the
arguments passed to an RPC, which was set to 2,000 bytes in
this experiment. Note that the size is larger than the largest
argument size (1,602 bytes) observed in the 20 legacy apps
(See Table I). Our results show that FLUID has a 2–4-times
faster responsiveness than the screen mirroring method.

RPC performance overhead. To explore the overhead
that FLUID imposes while supporting the cross-device RPC
described in Section VI-A, we compared the function execu-
tion times for three cases: i) without any interception (i.e.,

15.6

3.5
1.5

17.8

4.1
1.7

28.6

0.9

0.7 1.9 1.4 0.4

7.5

2.4
0.1

11.5

3.0
0.1

6.1
2.7

0.2
0

5

10

15

20

25

30

Vy
so

r
C

hr
om

e
FL

U
ID

Vy
so

r
C

hr
om

e
FL

U
ID

Vy
so

r
C

hr
om

e
FL

U
ID

Vy
so

r
C

hr
om

e
FL

U
ID

Vy
so

r
C

hr
om

e
FL

U
ID

Vy
so

r
C

hr
om

e
FL

U
ID

Vy
so

r
C

hr
om

e
FL

U
ID

A+Gallery Gallery VLC Music
Player

Naver
Map

Maps.me eBay

Tr
an

sf
er

 S
iz

e
(M

by
te

s) Init Inactive Active

Fig. 9. Data usage comparison

on a stock Android), ii) with interceptions but no RPCs,
and iii) with both interceptions and RPCs. In this experi-
ment, we used a custom app that invokes a simple function
TextView.setText() 100 times. Our results show that,
among the three cases, the average execution times for the
function were 215, 221, and 2,811 µs (with standard deviations
of 63, 61, and 876 µs, respectively). This indicates that
FLUID only incurs an affordable overhead, 6 µs on average,
for intercepting a function call. By contrast, the third case
incurs a relatively large latency because of the RPC message
transmission. Although this is an inevitable cost required for
cross-device communication, we expect that this issue can
be mitigated through advanced wireless technologies such as
802.11ad.

C. Network Optimization

As shown in Fig. 8, a network transfer occupies a large
part of the UI response time for both FLUID and SCRCPY.
To further explore the impact of network usage, we measured
the amount of network data transmitted in the following three
stages: i) init: it denotes the initialization for user interaction,
i.e., launching an app for screen sharing and deploying some
UI elements to a guest device for FLUID. ii) inactive: an idle
period, without interaction, that lasts until the 10 sec mark
(i.e., no user input is provided), and iii) active: an active period
from starting touch events, after the 10 sec mark. During this
experiment, we compared the network usage of FLUID and
screen mirroring approaches utilized for various multi-surface
use cases. FLUID moves only those UI elements selected by
users to different devices for the same use cases, whereas
screen mirroring duplicates the entire screen of one device to
another. The differences in these approaches lead to different
patterns of network usage, which can affect both the response
time and energy consumption.

We conducted this experiment using the seven legacy appli-
cations shown in Table I, and we used Chromecast and Vysor
to experiment with screen mirroring approaches. Fig. 9 shows
the total amount of data transmitted in each application. We
confirmed that FLUID uses a considerably smaller traffic than
the screen mirroring methods in all cases. Vysor provides
screen sharing with the full resolution of the host, whereas
Chromecast supports a lower resolution to decrease the net-
work usage. Notably, FLUID can support the same resolution
as Vysor with a much smaller amount of network usage than
Chromecast.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3349561

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 11,2024 at 03:55:31 UTC from IEEE Xplore. Restrictions apply.

12

Tr
an

sf
er

re
d

pa
ck

et
s

(B
yt

es
)

Time (s)

init

init

init typing

typing

typing

inactive

inactive

inactive enter

enter

enter

Fig. 10. Byte transfer over time

We further investigated the differences in the network usage
patterns of these approaches by focusing on Naver Maps,
which is a widely used map app. The Naver map scenario
involves moving a query input box for location searching to
a guest device, setting the focus to the input box by tapping,
typing a location name with 11 characters, and tapping the
enter key in the input box. Fig. 10 shows the amount of
network transfer over time divided into three stages: init,
inactive, and active. The time intervals in which network
transfer occurs frequently are represented by high-density
areas. Vysor has different densities over time because it uses
an adaptive frequency for screen updates. In the active stage,
Vysor has denser lines than in the inactive stage because
it updates the guest screen more frequently when giving a
user input. Consequently, it transmits a significant number of
data. Meanwhile, Chromecast has similar densities that appear
periodically because it contains transmitted frames at a static
frequency, regardless of the user input. Thus, Chromecast
uses a smaller number of network data than Vysor, instead
of supporting lower resolution mirroring. By contrast, FLUID
has a completely different pattern of network usage. It has
transmitted a near-zero amount of network data in the inactive
stage. In the active stage, it has transferred a much smaller
amount of network data at a much lower frequency than the
mirroring approaches. This is because FLUID transmits only
the data (e.g., RPC arguments and return values) required for
cross-device cooperation through RPCs. Notably, there are 11
peaks (marked with red dots) between focusing on the input
box and tapping the enter key. These peaks match accurately
with the number of characters in the location name used as
a query keyword during this experiment. This result indicates
that FLUID optimizes the network performance by reducing
both the numbers of data transfers and network round trips.

D. Power Consumption
We measured the power consumption of FLUID through

a Monsoon Power Monitor [25] while running three legacy
apps under the same scenario used for Fig. 9. Specifically,
we measured the average power consumed in five different
device cases, i.e., the host and guest devices of FLUID, the host
devices of Chromecast and Vysor, and a single device system.
As shown in Fig. 11, FLUID consumes power comparable to
the single-device case for both the host and guest devices.
Chromecast and Vysor have considerable power overhead
compared to FLUID.

To further investigate the cause of the power consumption,
we plotted the amount of power consumed by Naver Maps

0

2

4

6

8

10

12

C V F/H F/G S C V F/H F/G S C V F/H F/G S
Naver Map eBay VLC

Po
w

er
 c

on
su

m
pt

io
n

(W
)

Init Inactive Active

C: Chromecast V: Vysor F/H: FLUID Host F/G: FLUID Guest S: Single device

Fig. 11. Power consumption comparison

0
5

10
15

0 5 10 15 20 25

0
5

10
15

0 5 10 15 20 25

0
5

10
15

0 5 10 15 20 25

0
5

10
15

0 5 10 15 20 25

0
5

10
15

0 5 10 15 20 25

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
W

)
init(1.93W) inactive(1.20W) active(1.54W)

active(2.65W)inactive(2.00W)init(2.86W)

init(3.80W) inactive(2.25W)
Chromecast

active(2.87W)

init(2.71W) inactive(0.80W) active(1.97W)

init(2.19W) inactive(0.91W) active(1.28W)

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

Single Device

0 5 10 15 20 25
FLUID Guest

FLUID Host

Vysor

Time (s)

Fig. 12. Power consumption over time

over time, as shown in Fig. 12. We confirmed that network
usage primarily causes the power consumption overheads of
FLUID, Chromecast, and Vysor, which follows the same trend
as a byte transfer over time (Fig. 10).

We did not explicitly solve power optimization in this
study. Instead, we focused on optimizing the performance by
minimizing the network latency, as evaluated in Section XI-C.
Notably, the efficient use of wireless networks reduces the
energy consumption because network usage dominates the
power consumption overhead.

E. Runtime Change Handling
The overall performance. We quantitatively evaluated the

ability of FLUID to handle the changes in runtime. Among
the 20 legacy apps listed in Table I, we selected some apps
that apply new UI trees when changing the device configu-
rations (e.g., device orientation changes, screen resizing, and
language switching). We measured the average elapsed times
of updating the guest UI objects when applying new UI trees
to the host device. We also compared the performances of the
two approaches: BASE and OPT. BASE is a baseline approach
in which no optimization techniques are applied. It brings all
necessary data from the guest device on demand and then

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3349561

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 11,2024 at 03:55:31 UTC from IEEE Xplore. Restrictions apply.

13

0

200

400

600

800

1000

1200

1400

1600

1800

2000

BA
SE

O
PT

BA
SE

O
PT

BA
SE

O
PT

BA
SE

O
PT

BA
SE

O
PT

BA
SE

O
PT

BA
SE

O
PT

BA
SE

O
PT

BA
SE

O
PT

A+ gallery Smart
AppLock

Gallery Instagram Music
player

Paint Paper
Draw

Text
editor

VLC
Player

El
ap

se
d

Ti
m

e
(m

s)
Mapping-network Mapping-computation Serialization Network Update Rendering

Fig. 13. Runtime change handling time for legacy apps

constructs UI mappings in a brute-force manner by calculating
the pixel similarity for all combinations of the UI widgets.
Based on the mappings, it redistributes new UI objects to
the guest device by transmitting the entire data. By contrast,
OPT utilizes our optimization methods for constructing UI
mappings and updating the guest UI objects, as described in
Section VIII-A.

Fig. 13 depicts the elapsed times in handling the changes
in runtime and shows that OPT can handle runtime changes
by 1.5–9-times faster than BASE. This means that OPT can
effectively reduce the elapsed time required to construct UI
mapping information and the amount of data required to
update the guest UI objects. Regarding UI mapping construc-
tion, we observed that BASE has considerable overhead in
bringing all graphical states of the guest UI widgets to the host
side (corresponding to Mapping-network) and in calculating
the pixel similarity for all combinations of widgets (corre-
sponding to Mapping-computation). However, OPT generates
no network overhead during mapping construction because
it precaches the up-to-date graphical states of the guest UIs
whenever they are refreshed on the guest side. In addition, we
observed that most legacy apps assign the same identifiers
to UI objects used for the same function. This allows the
OPT to avoid unnecessary computations for pixel similarity
by matching their identifiers.

Our results show that only 0.83 ms on average is required
to compute the pixel similarity between widgets of different
trees. As an exceptional case, the mapping-computation time
of PaperDraw is comparable to that of BASE. This is because
many widgets were defined without identifiers, despite the
same functions. In addition, OPT reduces the network trans-
mission times by 68.2% on average because it uses lesser data
than BASE to update the old guest UIs into new UIs. Notably,
BASE transmits an amount of data similar to the UI distribution
sizes specified in Table I, whereas OPT transmits only 0.1%
to 34.3% of the data amount.

We further examined how much OPT can reduce the UI dis-
tribution time depending on the type of guest UI. Fig. 14 shows
the average completion times in handling runtime changes
for the five most popular UI widgets with BASE and OPT.
According to the results, OPT outperforms BASE by 2–6-
times in the cases of UI widgets that handle large amounts of
graphical states (i.e., ImageView, ToggleButton, and SeekBar).
However, OPT and BASE exhibit a similar performance for
specific widgets, such as TextView and ProgressBar, because
of their relatively small amounts of graphical states. Addi-

0

100

200

300

400

500

600

BASE OPT BASE OPT BASE OPT BASE OPT BASE OPT

TextView ImageView ToggleButton SeekBar ProgressBar

El
ap

se
d

Ti
m

e
(m

s)

Mapping Serialization Network Update Rendering

Fig. 14. Runtime change handling time for UI types

100 × 100 200 × 200 400 × 400 800 × 800

2 2.31 5.23 17.04 63.74

4 5.80 15.09 53.16 199.42

8 15.19 49.03 179.93 686.66

16 50.21 178.76 658.10 2563.65

32 185.16 648.96 2549.64 9954.34

of widgets

Size (w × h)

TABLE II
ELAPSED TIMES FOR UI MAPPING CONSTRUCTION (MS)

tionally, both BASE and OPT have an insignificant mapping
overhead because we have used custom apps that have only
one UI object of each type under the replication mode of
FLUID.

UI mapping overhead. To further explore the overhead in
constructing UI mappings, we measured the execution times
when calculating the pixel similarity with varying numbers
and sizes of UI elements. To this end, we used custom apps
comprising several image widgets, with various colors and
without any identifier, and moved all of those widgets to the
guest device. The app changes the position of each widget
by applying a new UI tree whenever the device orientation
changes. Table II presents that the execution time of the
pixel similarity calculation increases as the number and size
of the widgets increase. This indicates that FLUID incurs an
affordable overhead for typical cases. Furthermore, FLUID can
create a long delay (approximately 10 s) in an extreme case.
However, in practice, most mobile devices have limited screen
resolutions (e.g., 2,732 × 2,048 for an Apple iPad pro [26]);
thus, mobile apps usually do not encounter such extreme cases.
For instance, we observe that legacy apps listed in Table I only
have 10 visible widgets on average (maximum of 39), and only
4% of them have a size of 800 × 800 or greater.

UI mapping accuracy. To further investigate the accuracy
of UI mapping, we conducted extensive experiments using 50
legacy apps with a high number of cumulative downloads from
the Google Play Store. Note that we excluded 3D games and
web applications that FLUID cannot support, as described in
Section XIV. During these experiments, we changed the device
configuration (e.g., display size) on the screen that each app
first shows after launching. If the app generated a new UI tree
for the changed configuration, FLUID tries to find widget pairs
from the old and new UI trees based on pixel similarity. Note
that a correct widget pair consists of one widget from the old
tree and one from the new tree, both of which have identical

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3349561

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 11,2024 at 03:55:31 UTC from IEEE Xplore. Restrictions apply.

14

39 11

UI Tree Change

No Change

0%

25%

50%

75%

100%

1 6 11 16 21 26 31 36

M
ap

pi
ng

 A
cc

ur
ac

y

Application Number
39

(a) (b)

Fig. 15. (a) The ratio of UI tree change on runtime change for 50 legacy
apps. (b) UI mapping accuracy for 39 individual apps with UI tree change.

appearance and functionality. We also identified the ground
truth of correct widget pairs using Android Studio’s layout
inspector tool. After that, we evaluate the mapping accuracy,
which is defined as the ratio of the number of correct widget
pairs over the total number of widget pairs.

Fig. 15(a) first shows how many of the 50 legacy apps
change their UI trees when the device configuration is
changed. We observed that 11 out of them utilize the existing
UI tree without changes to a new one, presumably to avoid
the extra overhead of re-rending the screen. On the other
hand, the remaining 39 apps (78% of the total) create new UI
trees, which potentially lead to usability degradation if FLUID
distributes some UIs to guest devices.

Then, we measured the mapping accuracy of FLUID for the
39 legacy apps which create new UI trees. Fig. 15(b) illustrates
that FLUID can find all widget pairs completely identical to
the ground truth for 28 legacy apps (71.8% of the total). This
is because these apps maintain the same visual appearance
with the same set of widgets as before, even if the UI tree
is changed due to device configuration changes. On the other
hand, for the 10 legacy apps (with app numbers 29–38), the
mapping accuracy drops up to 41.5% because the properties of
some widgets are significantly changed even though the old
and new UI trees entirely show similar visual appearances.
More specifically, we observed that the resolution of some
text/image widgets varies greatly in the new UI tree, even if
they show the same content. The large resolution differences
between these widgets can significantly reduce the accuracy
of our Euclidean distance-based pixel similarity estimation.
This could be mitigated if FLUID employs advanced algorithms
such as histogram or keypoint matching. Meanwhile, in the 39-
th app (i.e., Google Calendar), the new UI tree is rendered to
a completely different screen from the old UI tree, resulting
in an accuracy drop to 7.7%. In such a case, FLUID could
not handle runtime changes seamlessly, thus it should ask a
user to re-distribute UIs to resume the multi-device interaction.
However, this is a rare case that we only found in one of the
50 legacy apps used in our experiments.

Furthermore, we investigated how many similar graphical
states exist between widget pairs. To do this, we extracted
graphical states from the correct widget pairs and measured
the similarity between two widgets in each pair. Note that
the similarity of graphical states is defined as the ratio of the
number of states of a new widget identical to those of an
old one over the total number of states of the new widget.
Table III shows that the graphical states of each widget pair
are identical over 92.1% on average regardless of widget types.
And we confirmed the data size of non-identical graphical

Widget Type Avg. similarity in
graphical states

Avg. difference in
graphical states (bytes)

TextView 94.6% 89
ImageView 97.3% 384

Button 96.5% 193
Checkbox 99.8% 110
EditText 92.1% 476

ProgressBar 96.2% 677
SurfaceView 93.0% 114

TABLE III
THE AVERAGE SIMILARITY AND DIFFERENCE IN GRAPHICAL STATES

v.6.0 to v.8.1 v.8.1 to v.6.0 v.7.0 to v.8.1 v.8.1 to v.7.0

Same Field 96% 87% 98% 94%

Same Method 90% 82% 96% 92%

TABLE IV
COMPATIBILITY ACROSS DIFFERENT ANDROID VERSIONS

states between each widget pair is less than 700 bytes on
average. This implies that when a UI tree is changed due to
runtime changes, FLUID can update remote UIs successfully by
transmitting only the differences in graphical states between
the old and new widgets, which can be a good chance for
reducing network overhead greatly as shown in Fig. 14.

F. Compatibility
The core techniques of FLUID, including UI serialization

and cross-device RPC, depend on Android’s class definitions.
However, each class can be defined in different forms accord-
ing to the version of Android, and FLUID might not operate
properly between devices with different Android versions.
To check the variance of class definitions, we measured
the differences in methods and fields that common classes
have between Oreo (v.8.1), Nougat (v.7.0), and Marshmallow
(v.6.0). Table IV shows that most of the methods and fields
are the same for these versions. Therefore, we can infer that
many Android UI classes include common fields and methods
as a base.

To confirm our hypothesis, we added a simple translation
layer to the UI serialization and cross-device RPC mechanisms
to translate four types of UI objects from Oreo to Marsh-
mallow: TextView, Button, EditText, and a custom UI
(SeekBar). The prototype successfully serializes common
fields while adding dummy data for other fields and translates
common methods of the four types of UI objects (e.g.,
setText()), following the class definitions of the Marshmallow
version. We observed that all four UIs and their common
methods operate without error and retain the same look and
feel across Oreo and Marshmallow. We leave automating this
translation layer to future study.

XII. USABILITY STUDY

We further evaluated the efficacy of FLUID through usability
studies that respectively assess the perceived performance,
intuitiveness, usefulness, and satisfaction of mobile users.

Participants and Study Procedure. Through an online
community posting, we recruited 15 individuals (10 males, 5
females, mean age 24.7) to participate in our usability study.
During each study session, we asked them to perform four

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3349561

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 11,2024 at 03:55:31 UTC from IEEE Xplore. Restrictions apply.

15

Application
Performance Intuitiveness

of UI selection
[0,6]

Usefulness
[-3,3]

Satisfaction
[0,6]Distribution

[0,6]
Response

[0,6]

LiveMe 5.33 5.40 4.47 2.13 4.73

PaperDraw 4.53 5.87 3.93 2.47 5.33

Naver map 5.40 5.53 5.20 2.27 4.80

VLC Player 4.26 5.33 4.13 2.33 5.07

TABLE V
USER STUDY RESULTS ACROSS FOUR LEGACY APPS

apps in sequence, with single- and multi-device environments.
And then, participants were asked to provide ratings on Likert
scales about various aspects as follows:
• Performance for UI distribution/response: How much delay

did you feel when distributing UIs to the remote device and
touching the distributed UIs?

• Intuitiveness of UI selection: How intuitive do you think
the UI selection interface of FLUID is?

• Usefulness: How useful do you think the multi-device
interaction is, compared to the single-device environment?

• Satisfaction: What is your overall satisfaction with using
a legacy app on FLUID?
Study Scenarios. To evaluate FLUID on diverse user sce-

narios, we thoughtfully selected four legacy apps and gave a
short task scenario for each of them as follows.
• Live broadcast (LiveMe): Chat with other viewers while

watching the live broadcast video on the full screen.
• Painting (PaperDraw): Draw an animal using at least three

different painting tools/colors.
• Navigation (Naver map): Enter a destination on the search

input box for route navigation.
• Video player (VLC Player): Find specific scenes using

several control UIs while watching a video clip.
Results and Findings. Overall, participants responded with

positive feedback. As shown in Table V, all apps result in
positive scores, in particular at least 4.26, 4.13, and 4.80 for the
perceived performance, the UI selection intuitiveness, and the
overall satisfaction, respectively (0: very bad, 6: very good).
Furthermore, the usefulness scores were also positive for all
apps (-3: not useful at all, 3: very useful—compared to using
a single device).

One interesting finding from the study is that PaperDraw
and VLC Player received relatively low scores from partici-
pants for the UI distribution performance and the intuitiveness
of UI selection. This is due to the fact that both apps require
participants to select and distribute a lot of UI elements (i.e.,
7–20 widgets). In our post-survey, the participants provided
feedback regarding the reasons for the relatively low scores for
the two apps. Firstly, some participants reported experiencing
a perceptible delay when distributing many UIs to the remote
device. However, they noted that this one-shot overhead did
not significantly affect the overall satisfaction or usability
of the apps since FLUID provided fast responsiveness to the
distributed UIs after the initial delay. Secondly, some partic-
ipants found the UI selection interface of FLUID somewhat
cumbersome and unintuitive as it required users to select
multiple UIs one by one. They suggested that it would be more
intuitive if UI elements with the same purpose or function
were pre-grouped and users could select them all at once.
Considering feedback, we anticipate the UI selection interface

can improve by allowing app developers to provide selectable
UI groups via simple APIs in the near future.

Below, we share a number of remarkable quotes from the
participants for a better understanding of the user experiences
of each scenario.

Scenario 1: LiveMe. “when using multiple devices, the
broadcast screen was not overlapped by the chat keyboard,
which made it convenient to watch the broadcast and chat live
at the same time (P1)”. Similarly, “Applying this technology to
smart TVs could be incredibly beneficial because they typically
lack a typing interface (P5)”.

Scenario 2: PaperDraw. “I think moving the painting tools
and colors to another screen seemed to be a necessary feature
for video editors and designers. Additionally, using the color
UIs on the remote device provided a similar experience to
using a palette when painting (P6)”. On the other hand, P7
commented “The use case seemed useful, but in actual use, I
had to choose target UIs one by one to distribute them, which
makes it feel cumbersome in terms of UX design”.

Scenario 3: Naver map. “While many navigation apps
offer the ability to search for a destination route using voice
recognition, it is still very inconvenient due to its low accuracy
and slow responsiveness. On the other hand, I think FLUID is a
very competitive technology because it enables a passenger to
search for the destination on behalf of the driver by moving the
navigation app’s search box to his/her device quickly (P10)”.

Scenario 4: VLC Player. “Typically, we can control a smart
TV with a remote controller, but it is still inconvenient to
interact with several UIs on the smart TV using the remote
controller. So I think the UI distribution technology is very
suitable for the smart TV environment. If I can move a seek
bar on the smart TV to my smartphone, it will be more intuitive
to control the video content like this scenario (P11)”.

In summary, the results of this user study demonstrated
that the multi-device interactions empowered by FLUID can be
well accepted by users in terms of performance, intuitiveness,
usability, and satisfaction. In particular, we observed that the
participants successfully accomplished various task scenarios
in the multi-device environment by intuitively selecting nec-
essary UIs through the UI selection interface and transferring
them to other devices.

XIII. RELATED WORK

App-level multi-surface support. To support multi-surface
use, several custom applications have been released, such as
Netflix, Google Docs, and so on. These types of apps support
data sharing based on cloud services, and thus users can
access the same content from multiple devices. This allows
users to continuously conduct tasks across different devices
or simultaneously collaborate with other users. However, this
method incurs considerable costs to create custom apps and
has low applicability because such custom apps are developed
to support only specific multi-surface scenarios. However,
FLUID adopts a system-level approach that can support various
legacy apps without modifying their source codes.

New programming models/tools. Several studies have
suggested new programming models or development tools
for developing multi-surface apps. UIWear [2] presented a
development framework that automatically creates a new
smartwatch app with UIs extracted from a smartphone app.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3349561

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 11,2024 at 03:55:31 UTC from IEEE Xplore. Restrictions apply.

16

CollaDroid [3] proposed a development tool that inserts source
code for UI distribution into a legacy app allowing a user
to conduct collaborative tasks with others. However, these
methods do not consider extracting app-specific graphical
states related to custom UIs, and thus they cannot provide the
same look-and-feel for custom UIs of legacy apps. By contrast,
FLUID can identify the graphical states of custom UIs with no
false-negative errors by analyzing the UI source code of both
the Android platform and target app. This allows FLUID to
provide greater applicability to various legacy apps.

Screen sharing. Many applications support screen sharing
(or screen mirroring), which copies the screen of one device
onto another device, e.g., Teamviewer [27], Scrcpy [11], Air-
Play [4], and Chromecast [5]. However, as this method repli-
cates screens in a coarse-grained manner (i.e., at a unit of the
entire screen), its use cases are limited in utilizing the benefits
of multiple surfaces from the user’s perspective. For example,
screen sharing cannot support the use cases of FLUID, in
which an app distributes different UI elements across multiple
surfaces. As an exception, AirPlay and Chromecast can deliver
partial UIs to other devices only for some specialized apps;
therefore, they cannot support general legacy apps unless the
apps are developed for Chromecast or AirPlay.

App/thread migration. Flux [6] is an app migration mech-
anism that allows an Android app to move to another device
on runtime to utilize its surface. However, Flux allows an app
to utilize only one surface at a time, making it impossible to
utilize multiple surfaces concurrently by distributing different
UIs across them, in contrast to FLUID. Many studies have
proposed thread migration techniques [28], [29] to support
the offloading of computation-intensive tasks for servers with
powerful computing resources to improve their performance.
However, these techniques do not focus on design issues for
offloading UI tasks to support interactive usage, which is one
of the contributions of FLUID.

Cross-device RPC. RPC is a well-known technique that
has been used in various distributed systems for decades
and contains several API libraries, like Java RMI [30], etc.
However, unlike FLUID, it is not applicable to unmodified
legacy apps because it requires apps to use specific RPC
libraries. Mobile Plus [31] is the closest approach to the
proposed FLUID as it allows legacy apps to use RPC by
transparently extending within-device function calls to cross-
devices. However, Mobile Plus extends inter-process method
calls (i.e., binder calls) to a cross-device RPC, whereas FLUID
extends intra-process method calls within the same process
boundary. Such major differences lead to new challenges not
considered by Mobile Plus, such as intercepting local method
calls and ensuring the accuracy of replicated RPCs.

Cross-device I/O Sharing. Several studies have been
conducted to support I/O sharing between multiple devices.
Rio [32] provides virtualization at the device file layer to
enable I/O resource sharing. M2 [33] proposed a data-centric
approach that uses high-level device data to enable I/O sharing
between heterogeneous devices. MobiUS [34] supports screen
sharing between devices for high-resolution video. However,
these studies do not consider the use of multiple surfaces in
a fine-grained manner (i.e., at the unit of UI elements), which
is the key difference compared to FLUID.

XIV. DISCUSSION

Direct memory writes to the UI objects. The current
design of FLUID cannot synchronize UI changes caused by
direct memory writes to the graphical states of UI objects, that
is, direct memory writes to their public fields. However, these
cases are rarely observed in legacy apps because most app
developers avoid using such memory writes, which may lead
to race conditions during the UI rendering process. In general,
they follow the conventional principle of encapsulating the
graphical states of UI objects and changing them using only
function calls [35]. We can enable memory writes in public
fields of UI objects using the field-level distributed shared
memory technique proposed in COMET [29].

Native object serialization. Because C++ does not provide
runtime type information, such as Java Reflection, it is impos-
sible to serialize native objects implemented in C++ unless app
developers utilize external serialization libraries. Therefore,
the current prototype of FLUID includes serialization logic only
for the native objects of Android C++ graphics libraries (e.g.,
Skia [36]), but not for third-party native libraries. We observed
that the 20 legacy apps (Table I) use custom Java objects for
UIs but no custom native objects; thus, the current working
prototype successfully supports them. Moreover, we examined
43 open-source apps with an average of 4,505 star scores on
GitHub and found that only one of the apps used a custom
C++ library for graphics. This means that most apps tend to
employ the standard C++ graphics libraries of Android.

Multi-surface layouts. During the coverage tests described
in Section XI-A, we found some cases where their usability
could be improved with some assistance from app developers.
Specifically, with the current FLUID prototype, a user can
select only visible UI elements for migration or replication,
which may sometimes lead to a situation far from the user’s
expectation. For example, an app called Maps.me makes a
relevant query window visible only after a user types a query
in a text input box, due to which we cannot migrate or
replicate the two UIs together for better usability before the
user starts typing. However, this limitation can be addressed if
app developers bind the relevant query window and text input
box into one container UI (i.e., a layout object). In addition,
when rendering guest UIs, FLUID enables the renderer thread
on a guest device to optimize their size to fit the guest
surface resolution for better usability. Because this method
does not modify the graphical states of the guest UIs, we can
guarantee the deterministic execution of FLUID, as described
in Section VII-B. However, if app developers offer layout
guidelines for guest surfaces, they can optionally control how
FLUID will display guest UIs on other devices. For example,
if a user migrates a button UI that is set to be placed at a
position relative to other UIs on a host device, the current
FLUID prototype disregards the configuration and places the
button at an arbitrary position on the guest screen (e.g., the
middle of the screen). The layout guidelines can better address
such issues that may harm app usability.

Unsupported legacy apps. FLUID cannot support some
legacy apps, such as 3D games or web applications, that utilize
third-party UI frameworks (e.g., Unity [37] or WebKit [38])
because their UI objects are managed by internal data struc-
tures of these frameworks. This feature makes it impossible for
FLUID to access UI objects and transparently transform their

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3349561

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 11,2024 at 03:55:31 UTC from IEEE Xplore. Restrictions apply.

17

function calls into RPCs. However, third-party frameworks
handle UI objects internally in a similar manner as Android,
i.e., their UI objects are also managed by tree structures and
updated by local functions. Therefore, if we can modify them,
the general design of FLUID can be comprehensively applied.

Support for dynamically changing UIs. FLUID may en-
counter frequent updates when migrating dynamically chang-
ing UIs in real-time applications (e.g., video streaming), which
leads to intolerable network latency for users. To alleviate
this overhead, FLUID employs a more efficient approach by
transmitting only data (e.g., RPC arguments) for a few updated
UIs, as opposed to sending full-screen images like mirroring.
This can result in a substantial reduction in network trans-
mission. Furthermore, we anticipate that FLUID will support
such dynamic UIs with better performance by capitalizing on
upcoming wireless standards featuring high bandwidth and
ultra-low latency. For example, 6G networking technology [39]
is expected to provide 1-microsecond latency and 1-Tbps
bandwidth, which facilitates handling frequent updates for
dynamic UIs. Also, FLUID can be extended to implement video
encoding/compression to reduce such update overhead.

Security issues in multi-surface computing. In this work,
we assume that both host and guest sides are reliable; how-
ever, either may be compromised by real-world attackers.
For instance, malicious apps on the guest might attempt to
intercept user-private data displayed on migrated UIs. To
address this, we can run the FLUID wrapper app in a trusted
execution environment like ARM TrustZone [40], ensuring
secure execution and rendering of migrated UIs. Conversely,
we can also think of a situation where a malicious host app
accesses guest-side data without authorization. To avoid this,
FLUID restricts the accessible range of migrated UIs to the
wrapper app’s internal storage, which stores only the necessary
code and resource files for UI rendering. This prevents the
malicious host app from leaking or tampering with user-private
data stored elsewhere on the guest side.

Multi-device interaction beyond WLAN. To interact with
remote devices in different WLANs, FLUID can use a ded-
icated proxy server, as other network services do. However,
using a proxy server inevitably leads to increased network
delay, which may degrade the overall performance of FLUID.
So, we need to apply several techniques such as compression
or network data caching to reduce the performance overhead.

Applying FLUID to other systems. Thanks to the general
design principles of FLUID, it can be applicable to Android,
as well as other mobile platforms. FLUID is designed based
on the assumption that a single UI thread manages UIs in a
hierarchical structure and updates their states through function
calls. This is a typical design paradigm for most GUI-based
systems (e.g., UIView [41] in iOS). To apply FLUID design
to other mobile platforms, we have to consider the following
technical issues. i) Finding the graphical states of each UI
object through static analysis. Unlike Android, other mobile
platforms may support apps compiled directly into binary
code. In this case, it is fundamentally difficult to analyze a
binary code using CHA. However, if app developers utilize
the CHA feature offered by compilers (e.g., Swift SIL opti-
mizer [42]), FLUID can easily employ its result. ii) Serializing
the graphical states of the UI objects. It is infeasible to
support UI object serialization if other mobile platforms do

not provide runtime type information. However, as explained
earlier, this problem can be solved if compilers are extended
to provide such information. iii) Supporting transparent cross-
device RPC. If other mobile platforms are not VM-based,
unlike Android, it is difficult to intercept function calls directly.
Instead, we can use code instrumentation techniques that insert
extra code into an app to create and transfer RPC messages.

Compatibility between heterogeneous devices. FLUID can
support successful multi-surface interaction across devices
with varying form factors (e.g., smartphone or tablet) as
long as they share the same Android version and vendor.
However, compatibility issues may arise when their platform
versions or vendors differ, as some UI classes can be defined
differently on each device. To mitigate this, we can leverage
a translation layer to make migrated UIs compatible with
guest devices, as discussed in Section XI-F. This approach
is possible because the differences in UI classes are not
large enough to compromise the applicability of FLUID, and
their underlying UI mechanism is the same. On the other
hand, it is worth noting that FLUID has a limitation in its
applicability for heterogeneous platforms—it cannot support
interaction between Android and non-Android platforms (e.g.,
iOS) because each utilizes a completely different execution
environment for UI rendering. To support such an interaction,
we can consider another approach that converts distributed
mobile UIs into highly portable web UIs consisting of HTML
and Javascript. We leave it as future work.

XV. CONCLUSION

This paper introduces FLUID, a new mobile platform based
on Android, which supports innovative methods of interacting
with unmodified legacy applications across multiple devices.
FLUID allows users to migrate or replicate UI elements to
multiple devices selectively while facilitating cross-device
cooperation between the app logic and distributed UI objects
transparently and deterministically. Our experiments with the
FLUID prototype demonstrated that it achieves high flexi-
bility, transparency, and applicability in multi-surface usage,
attracting a broad range of legacy apps in multi-surface en-
vironments. In the near future, we anticipate that FLUID will
facilitate the development of useful and creative multi-surface
apps while providing various multi-device user experiences.

REFERENCES

[1] T. Spangler, “U.S. Households Have an Average of 11 Connected
Devices - And 5G Should Push That Even Higher,” 2019, https:
//variety.com/2019/digital/news/u-s-households-have-an-average-of-11-
connected-devices-and-5g-should-push-that-even-higher-1203431225/.

[2] J. Xu, Q. Cao, A. Prakash, A. Balasubramanian, and D. E. Porter,
“Uiwear: Easily adapting user interfaces for wearable devices,” in
Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking, ser. MobiCom ’17, 2017.

[3] J. Zheng, X. Peng, J. Yang, H. Cai, G. Huang, Y. Zhang, and
W. Zhao, “Colladroid: Automatic augmentation of android application
with lightweight interactive collaboration,” in Proceedings of the 2017
ACM Conference on Computer Supported Cooperative Work and Social
Computing, ser. CSCW ’17, 2017.

[4] Apple, “Airplay,” 2023, https://store.google.com/product/chromecast.
[5] Google, “Chromecast,” 2019, https://www.apple.com/airplay/.
[6] A. Van’t Hof, H. Jamjoom, J. Nieh, and D. Williams, “Flux: Multi-

surface computing in android,” in Proceedings of the Tenth European
Conference on Computer Systems, ser. EuroSys ’15, 2015.

[7] S. K. Card, A. Newell, and T. P. Moran, The Psychology of Human-
Computer Interaction. L. Erlbaum Associates Inc., 1983.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3349561

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 11,2024 at 03:55:31 UTC from IEEE Xplore. Restrictions apply.

18

[8] J. Nielsen, Usability Engineering. Morgan Kaufmann, 1994.
[9] S. B. Shneiderman and C. Plaisant, Designing the user interface.

Pearson Addison Wesley, 2005.
[10] ClockworkMod, “Vysor,” 2019, https://www.vysor.io/.
[11] Genymobile, “Scrcpy,” 2019, https://github.com/Genymobile/scrcpy.
[12] Expedia, “Expedia,” 2019, https://www.expedia.com/app.
[13] A. Sahami Shirazi, N. Henze, T. Dingler, K. Kunze, and A. Schmidt,

“Upright or sideways? analysis of smartphone postures in the wild,” in
Proceedings of the 15th International Conference on Human-Computer
Interaction with Mobile Devices and Services, ser. MobileHCI ’13, 2013.

[14] S. R. Group, “Soot - a java optimization framework,” 2019, https://
github.com/Sable/soot.

[15] E. Software, “Kryo,” 2019, https://github.com/EsotericSoftware/kryo.
[16] M. S. Gordon, D. K. Hong, P. M. Chen, J. Flinn, S. Mahlke, and Z. M.

Mao, “Accelerating mobile applications through flip-flop replication,”
in Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’15, 2015.

[17] Oracle, “Jdk swing framework,” 2018, http://docs.oracle.com/javase/6/
docs/technotes/guides/swing/.

[18] T. Q. Company, “The qt framework,” 2019, https://www.qt.io/.
[19] Apple, “Macos cocoa,” 2019, http://developer.apple.com/technologies/

mac/cocoa.html.
[20] S. Zhang, H. Lü, and M. D. Ernst, “Finding errors in multithreaded gui

applications,” in Proceedings of the 2012 International Symposium on
Software Testing and Analysis. ACM, 2012, pp. 243–253.

[21] P.-E. Danielsson, “Euclidean distance mapping,” Computer Graphics
and Image Processing, 1980.

[22] Y. Z. Liwei Wang and J. Feng, “On the euclidean distance of images,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005.

[23] D. Katz and D. Ward, “Bidirectional Forwarding Detection (BFD),”
RFC 5880, Jun. 2010. [Online]. Available: https://www.rfc-editor.org/
info/rfc5880

[24] Google, “Measure app performance with android profiler,” 2019, https:
//developer.android.com/studio/profile/android-profiler.

[25] M. Solutions, “Monsoon power monitor,” 2019, https://www.msoon.
com/.

[26] Apple, “ipad pro - technical specifications,” 2021, https://www.apple.
com/ipad-pro/specs/.

[27] TeamViewer, “Teamviewer - remote support, remote access, service
desk, online collaboration and meetings,” 2018, https://www.teamviewer.
com.

[28] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proceedings of
the Sixth Conference on Computer Systems, ser. EuroSys ’11, 2011.

[29] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“COMET: Code offload by migrating execution transparently,” in Pre-
sented as part of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12), 2012.

[30] E. Pitt and K. McNiff, Java.Rmi: The Remote Method Invocation Guide.
Addison-Wesley Longman Publishing Co., Inc., 2001.

[31] S. Oh, H. Yoo, D. R. Jeong, D. H. Bui, and I. Shin, “Mobile plus:
Multi-device mobile platform for cross-device functionality sharing,” in
Proceedings of the 15th Annual International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’17, 2017.

[32] A. Amiri Sani, K. Boos, M. H. Yun, and L. Zhong, “Rio: A system
solution for sharing i/o between mobile systems,” in Proceedings of the
12th Annual International Conference on Mobile Systems, Applications,
and Services, ser. MobiSys ’14, 2014.

[33] N. AlDuaij, A. Van’t Hof, and J. Nieh, “Heterogeneous multi-mobile
computing,” in Proceedings of the 17th Annual International Conference
on Mobile Systems, Applications, and Services, ser. MobiSys ’19, 2019.

[34] G. Shen, Y. Li, and Y. Zhang, “Mobius: Enable together-viewing video
experience across two mobile devices,” in Proceedings of the 5th
International Conference on Mobile Systems, Applications and Services,
ser. MobiSys ’07, 2007.

[35] Z. Mednieks, L. Dornin, G. B. Meike, and M. Nakamura, Programming
Android. Oreilly & Associates Inc, 2011.

[36] Skia, “Skia graphics library,” 2019, https://skia.org/.
[37] “Unity Real-Time Development Platform,” 2021, https://unity.com/.
[38] “WebKit: A fast, open source web browser engine,” 2021, https://webkit.

org/.
[39] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “To-

ward 6g networks: Use cases and technologies,” IEEE Communications
Magazine, 2020.

[40] Arm, “Trustzone - arm developer,” 2021, https://developer.arm.com/ip-
products/security-ip/trustzone.

[41] N. Smyth, iOS 12 App Development Essentials. Payload Media, Inc.,
2012.

[42] Apple, “Welcome to swift.org,” 2019, https://swift.org/.

Sangeun Oh is an Assistant Professor with the
Department of Software and Computer Engineering,
Ajou University, Suwon, South Korea. His research
interests include mobile/IoT systems and real-time
embedded systems. He received the B.S. degree
in computer and communication engineering from
Korea University, Seoul, South Korea in 2012, and
the M.S. and Ph.D. degrees in computer science
from KAIST, Daejeon, South Korea, in 2014 and
2020, respectively.

Ahyeon Kim received the B.S. degree in electrical
engineering and the M.S. degree in computer science
from KAIST, Daejeon, South Korea, in 2019 and
2021, respectively.

Sunjae Lee received the B.S. and M.S degrees in
computer science from KAIST, Daejeon, South Ko-
rea, in 2019 and 2021, respectively. He is currently
pursuing the Ph.D. degree in computer science at
KAIST, Daejeon, South Korea.

Kilho Lee Kilho Lee is an assistant professor with
the School of AI Convergence, Soongsil University,
South Korea. He received his BSc degree in Infor-
mation and Computer Engineering from Ajou Uni-
versity, and his MSc and PhD degrees in Computer
Science from KAIST. His interests include system
design for real-time embedded systems and cyber-
physical systems.

Dae R. Jeong Dae R. Jeong received the B.S., and
M.S. degree from the School of Computing, KAIST,
Daejeon, South Korea, in 2014, 2016 respectively.
He is a Ph.D candidate in the School of Computing,
KAIST. His current research interests include find-
ing and diagnosing concurrency bugs under various
memory models in a large system software including
a kernel.

Steven Y. Ko is an Associate Professor and a Dean’s
Excellence Fellow in the School of Computing Sci-
ence at Simon Fraser University. His research inter-
est is improving the reliability and security of mobile
systems. He received a B.S. degree in Mathematics
from Yonsei University, an MS in Computer Science
and Engineering from Seoul National University,
and a PhD in Computer Science from University of
Illinois at Urbana-Champaign.

Insik Shin is a professor in the School of Computing
at KAIST, Korea. His research interests include real-
time embedded systems, systems security, mobile
computing, and cyber-physical systems. He received
a Ph.D. degree from the University of Pennsylvania,
USA, an MS degree from Stanford University, USA,
and a BS degree from Korea University, Korea, all
in Computer (& Information) Science.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3349561

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on January 11,2024 at 03:55:31 UTC from IEEE Xplore. Restrictions apply.

