
FLUID: Flexible User Interface Distribution
for Ubiquitous Multi-device Interaction

Sangeun Oh ⃰, Ahyeon Kim ⃰, Sunjae Lee ⃰, Kilho Lee ⃰,

Dae R. Jeong ⃰, Steven Y. Ko†, and Insik Shin ⃰

⃰ †

Various surfaces become pervasive!

• Smart devices have various surfaces with different shapes & sizes
– From smartwatch to smart TV

– Foldable screen (Samsung Galaxy Fold) / dual screen (LG V50)

2

Potential for multi-surface interaction

• The trend can change how users interact with applications
– Using only single surface

3

User Single surface Application

 Using multiple surfaces concurrently

Multiple surfaces

Potential for multi-surface interaction

• The trend can change how users interact with applications
– Using only single surface

4

User Application

 Using multiple surfaces concurrently

Use case: live streaming

5

Existing solutions

• Customized apps
– Extra engineering efforts

– Low applicability

• Screen mirroring
– Low flexibility

 Supports only full screen

– Low responsiveness for high resolutions

• App migration
– Low flexibility

 Supports only full screen

 Cannot support concurrent usage 6Flux [EuroSys’15]

Vysor Chromecast

Netflix Smartwatch
apps

Google docs

Research goal

• Design a new mobile platform that supports multi-surface interaction
by distributing UI objects to different devices

– in a flexible, transparent and responsive manner

7

FLUID
(FLexible UI Distribution)

UI object A

Target App

UI object B

<Host device>

App
logic

Surface

FLUID overview

• Key idea: separation between app logic & UI parts

8

UI update

Rendering

Input
event

User

UI selection

Target App

UI object B

<Host device>

App
logic

Surface

FLUID overview

• Key idea: separation between app logic & UI parts
1) Distributing target UI objects to remote devices and rendering them

9

FLUID Wrapper App

<Guest device>

Surface

Rendering

UI object AUI object A

Target App

UI object B

<Host device>

App
logic

Surface

FLUID overview

• Key idea: separation between app logic & UI parts
1) Distributing target UI objects to remote devices and rendering them

10

FLUID Wrapper App

<Guest device>

Surface

RenderingRendering

UI distribution
UI object A UI object A

Target App

<Host device>

Surface

FLUID overview

• Key idea: separation between app logic & UI parts
1) Distributing target UI objects to remote devices and rendering them

2) Giving an illusion as if app logic and UI objects were in the same process

11

FLUID Wrapper App

<Guest device>

Surface

UI object B

App
logic

UI object A

RenderingRendering

Input
event

User
UI update

Same-process illusion

Why is FLUID good?

• Flexibility
– Allow users to control multiple surfaces as they want via fine-grained UI

distribution

• Transparency
– Support legacy apps without any modification to them

– Develop new multi-surface apps under the existing programming model

• Responsiveness
– Require less network transmission when moving UIs instead of full screen

12

Problems

• P1. How to split & distribute UI objects?
– Transmits minimum graphical states needed for UI rendering

 To reduce network overhead

– However, it is unknown which graphical states app-specific custom UIs use

13

Android
UI class

Custom UI class

Unknown
member fields

?

Problems

• P1. How to split & distribute UI objects?
– Transmits minimum graphical states needed for UI rendering

 To reduce network overhead

– However, it is unknown which graphical states app-specific custom UIs use

– Our solution: Selective UI distribution

14

FLUID
static

analyzer

FLUID
platform

Platform
image

Target app’s
APK file

Analysis
results

UI object B

UI object A

Runtime tracking

<Offline stage> <Online stage>

Problems

• P2. How to maintain interaction between app logic & UI objects?
– Such interaction is achieved via local function calls

 e.g., TextView.setText(), ImageView.setImageResource(), etc.

– However, local functions cannot be executed across devices

– Our solution: transparent RPC transformation in Android VM (ART)

15

<Host device>

App logic UI object AUI object A
Migrated

<Guest device>

Local
function call

Remote Procedure Call (RPC)

Call
intercept!

Evaluation environment

• Implemented FLUID prototype based on Android 8.1 (Oreo)

• Used Google Pixel XL (smartphone) & Pixel C (tablet)
– Phone-to-phone

– Phone-to-tablet

– Tablet-to-phone

• On the Same WiFi network

16

Pixel XL Pixel C

App coverage

• Using 20 legacy apps for 10 multi-
surface scenarios

– All legacy apps use their own custom
UIs

• FLUID can support various legacy
apps successfully

17

Use case scenario UI type App name

Login with personal device Editor
Instagram

Paypal

Fill in information collaboratively
Text,
editor

eBay

Booking.com

Chatting with different device while
broadcasting

Button,
editor

LiveMe

Afreeca TV

Search destination with different
device

Button,
editor

Naver map

Maps.me

Control media with different device
Seek bar,
button

VLC Player

Music Player

Control painting tool with different
device

Scroll,
image,
button

PaperDraw

Paint

Sharing photo to public device Image
Gallery

A+ Gallery

Unlock pattern with personal device
Pattern
lock

Smart app lock

AppLock

Read document with different
device

Text,
scroll

File Viewer

Bible KJV

Edit text on different device Editor
Color note

Text editor

UI distribution time

• It ranges from 132 to 735ms  Fast enough for interactive use

18

Network transfer over time

• Comparing transfer pattern of FLUID and other mirroring techniques
– Under the same scenario that a user types destination (11 characters) into

the search box UI of Naver map

19

Search box UI

11 characters typed

Vysor

Chromecast

Conclusion

• Designed & implemented FLUID
– Separation between app logic & UIs

– Evaluated with 20 legacy apps for
10 multi-surface scenarios

• Expect FLUID to accelerate
development of creative and
useful apps to provide novel UX

20

Thank you!
Visit cps.kaist.ac.kr/fluid for more information:)

21

