FLUID: Flexible User Interface Distribution
for Ubiquitous Multi-device Interaction

Sangeun Oh* Ahyeon Kim® Sunjae Lee” Kilho Lee”,
Dae R. Jeong®, Steven Y. Kot, and Insik Shin*

-I- . .
KAIST at Buffalo

*
— The State University of New York

Various surfaces become pervasive!

* Smart devices have various surfaces with different shapes & sizes
— From smartwatch to smart TV
— Foldable screen (Samsung Galaxy Fold) / dual screen (LG V50)

Potential for multi-surface interaction

* The trend can change how users interact with applications
— Using only single surface =» Using multiple surfaces concurrently

User Single surface Application

Potential for multi-surface interaction

* The trend can change how users interact with applications
— Using only single surface =» Using multiple surfaces concurrently

O~~~k

User Multiple surfaces Application

Use case: live streaming

—W Jaidhatkeh... A t ©

a2

LY

Twitch LiveMe

Instagram VK live

joined

hi

Existing solutions

e Customized apps E
— Extra engineering efforts

— Low applicability Google docs Netflix Smartwatch
apps

* Screen mirroring

— Low flexibility
= Supports only full screen

— Low responsiveness for high resolutions

* App migration
— Low flexibility
= Supports only full screen s
= Cannot support concurrent usage Flux [EuroSys’15] 6

Research goal

* Design a new mobile platform that supports multi-surface interaction
by distributing Ul objects to different devices
— in a flexible, transparent and responsive manner

\ 4

FLUID
(FLexible Ul Distribution)

FLUID overview

* Key idea: separation between app logic & Ul parts

Target App

—
Ul update

Ul object A

Ul ObjeCt B User

Rendering l

Surface

<Host device>

FLUID overview

* Key idea: separation between app logic & Ul parts
1) Distributing target Ul objects to remote devices and rendering them

Target App FLUID Wrapper App
objec
App L st
logic Ul object B
Rendering l
Surface Surface

<Host device> <Guest device>

FLUID overview

* Key idea: separation between app logic & Ul parts
1) Distributing target Ul objects to remote devices and rendering them

Target App

App

logic

Ul object B

Rendering l

Surface

<Host device>

Ul distribution

Ul object A = p————— | object A

FLUID Wrapper App

Rendering

Surface

<Guest device>

10

FLUID overview

* Key idea: separation between app logic & Ul parts
1) Distributing target Ul objects to remote devices and rendering them
2) Giving anillusion as if app logic and Ul objects were in the same process

JargetAon _________ | Same-process illusion }-FUIDMWrannerAnn. 5t

event

Ul object A

Ul update
Ul object B

Rendering

Rendering

Surface Surface

<Host device> <Guest device> 11

Why is FLUID good?

* Flexibility

— Allow users to control multiple surfaces as they want via fine-grained Ul
distribution

* Transparency
— Support legacy apps without any modification to them
— Develop new multi-surface apps under the existing programming model

* Responsiveness
— Require less network transmission when moving Uls instead of full screen

12

Problems

* P1. How to split & distribute Ul objects?
— Transmits minimum graphical states needed for Ul rendering
" To reduce network overhead
— However, it is unknown which graphical states app-specific custom Uls use

W Custom Ul class

Android Unknown
? P
Ul class ' member fields

13

Problems

* P1. How to split & distribute Ul objects?
— Transmits minimum graphical states needed for Ul rendering
" To reduce network overhead
— However, it is unknown which graphical states app-specific custom Uls use
— Our solution: Selective Ul distribution

<Offline stage> <Online stage>
Target app’s E Runtime tracking
APK file [l Gili ';t%’t'i'z pll;l-t:jc:?m Ul object A
Platform / — % ﬁ';i'l\gis p Ul object B

image
g 14

Problems

* P2. How to maintain interaction between app logic & Ul objects?
— Such interaction is achieved via local function calls
= e.g., TextView.setText(), ImageView.setimageResource(), etc.
— However, local functions cannot be executed across devices
— Our solution: transparent RPC transformation in Android VM (ART)

<Host device> <Guest device>

Local

function call :)
)) ; Migrated :
App logic Ul object A ~—--===5=========== + Ul object A

Call
intercept!

Remote Procedfure Call (RPC)
- 15

Evaluation environment

* Implemented FLUID prototype based on Android 8.1 (Oreo)

e Used Google Pixel XL (smartphone) & Pixel C (tablet)

— Phone-to-phone
— Phone-to-tablet
— Tablet-to-phone

e On the Same WiFi network

Pixel XL Pixel C

16

App coverage

e Using 20 legacy apps for 10 multi-
surface scenarios

— All legacy apps use their own custom
Uls

* FLUID can support various legacy
apps successfully

Use case scenario Ul type App name
. .) Instagram
Login with personal device Editor
Paypal
G : : Text, eBay
Fill in information collaboratively e
editor Booking.com
Chatting with different device while | Button, LiveMe
broadcasting editor Afreeca TV
Search destination with different Button, Naver map
device editor Maps.me
]])) Seek bar, | VLC Player
Control media with different device eek b
button Music Player
Control painting tool with different .ScroII, PaperDraw
devi IMage, Paint
evice button
))) Gallery
Sharing photo to public device Image
A+ Gallery
)) Patt Smart app lock
Unlock pattern with personal device | a kem
oc AppLock
Read document with different Text, File Viewer
device scroll Bible KJV
))] Color note
Edit text on different device Editor

Text editor

Ul distribution time

* It ranges from 132 to 735ms = Fast enough for interactive use

Distribution Time (ms)

B Serialization mNetwork 0O Activity launch DO Restoration ®Rendering

800

700

600

500

400

300

200
0

¢\ & *@' S ¢t

,b\. '6 \, 30{\00\“\\0&0\\0@\0"@Q O‘G“\Qb "S\
x. & QQQ"OQ' ‘\ AR I A AR
&2 VQ ST o"" Y R Ny
v & o N F R ALY
&
=)

18

Network transfer over time

 Comparing transfer pattern of FLUID and other mirroring techniques

— Under the same scenario that a user types destination (11 characters) into
the search box Ul of Naver map

Search box Ul

— Place, bus
Ch romecast ;

_ . : ChromeCast i
init inactive in enter
2000 < _— typing >

0 S 10 15 20 25

9
-
Q
% 2000 mlt inactive Vysr.-r typing ,‘e“te[,
Xx >
e il I’IHHH HHINlIIMIIIllllll\IIIlNI\IIIIf""II"‘I
© n - i |
£ 25
@
‘E 2000 |n|t inactive FLUID typing enter
©
F 100 [
0000 060 00 0 00O
JI el At — i m_/!-.fiﬁ
5 25

" 11 characters typed 19

Conclusion

* Designed & implemented FLUID Papca
— Separation between app logic & Uls g

— Evaluated with 20 legacy apps for
10 multi-surface scenarios

* Expect FLUID to accelerate
development of creative and
useful apps to provide novel UX

20

Thank you!

Visit cps.kaist.ac.kr/fluid for more information:)

Uni it
KAIST at Buffalo

The State University of New York

