SEGFUZZ: Segmentizing Thread Interleaving to
Discover Kernel Concurrency Bugs through Fuzzing

Dae R. Jeong?, Byoungyoung Lee?, Insik Shin?, Youngjin Kwon

!Korea Advanced Institute of Science & Technology
2Seoul National University

‘ Kernel concurrency bugs

® Kernel concurrency bugs manifest depending on thread interleavings

‘ Kernel concurrency bugs

® Kernel concurrency bugs manifest depending on thread interleavings

Interleaving 1

__

Syscall A Syscall B
flag = 1;
if (flag)
init_ptr(ptr);
if (flag)

access_ptr(ptr);

S o o o e e o e e e e M M e e M M e e M M e Smm M M e M Mmm M e M M M e mm M M e e M e e e e e e

Kernel concurrency bugs

® Kernel concurrency bugs manifest depending on thread interleavings

Interleaving 1 Interleaving 2
Syscall A Syscall B Syscall A Syscall B
flag = 1; if (flag)
if (flag) init_ptr(ptr);
init_ptr(ptr); i i flag = 1;
f (flag) i - if(flag) |
access_ptr(ptr); | i :\ access_ptr(ptr); 5

—— o o e e e e e e e e
S o o o e e o e e e e M M e e M M e e M M e Smm M M e M Mmm M e M M M e mm M M e e M e e e e e e - — o o e e e e e e e e

Uninitialized access!

‘ Fuzzing

® Fuzzing explores the search space of the program by running random inputs

o Conventionally focusing on exploring execution paths

m Symbolic/concolic execution, static analysis, ...

‘ Fuzzing

® Fuzzing explores the search space of the program by running random inputs

o Conventionally focusing on exploring execution paths

m Symbolic/concolic execution, static analysis, ...

® Recent approaches to identify concurrency bugs

o Exploring execution path & thread interleavings
m Razzer [S&P’19], Krace[S&P’20], Snowboard[SOSP’21], Conzzer[NDSS’22], ...

o Controlling thread interleavings by overriding the kernel scheduler

‘ Coverage-guided fuzzing

© Coverage metric

o Expressing the search space of the program

o Guiding the generation of new test cases

‘ Coverage-guided fuzzing

© Coverage metric

o Expressing the search space of the program

o Guiding the generation of new test cases

®© Code coverage

o Expressing the search space of execution paths

o Ex) Branch coverage

‘ Coverage-guided fuzzing

®

Code coverage

o Limited in expressing the search space of thread interleavings

Interleaving 1

/

Thread 1 Thread 2
A=2:
A=1;
if (A!=0)
print(A);

\

/

Interleaving 2
Thread 1 Thread 2
A=1;
A=2;
if (A!=0)
print(A);

\

The same branch coverage but different outcomes

‘ Coverage-guided fuzzing

© Coverage metric

o Expressing the search space of the program

o Guiding the generation of new test cases

®© Code coverage

o Expressing the search space for execution paths

o Ex) Branch coverage

® [Interleaving coverage

o Expressing the search space for thread interleavings

o Not well-studied area

10

‘ Coverage-qguided fuzzing

© Coverage metric

o Expressing the search space of the program

o Guiding the generation of new test cases

We want to design and utilize interleaving coverage

® [Interleaving coverage

o Expressing the search space for thread interleavings

o Not well-studied area

11

‘ Coverage metric for thread interleavings

® Challenge

o Alarge search space of thread interleavings

12

‘ Coverage metric for thread interleavings

® Challenge

o Alargesearch space of thread interleavings

Syscall A Syscall B

100 inst. for each syscall \R 7 77:

=

13

‘ Coverage metric for thread interleavings

® Challenge

o Alarge search space of thread interleavings

Syscall A Syscall B

T = j There are a huge number of interleavings
| 5 58
100 inst. for each syscall < . (e.g., more than 10°°)

=

14

‘ Coverage metric for thread interleavings

® Challenge

o Alarge search space of thread interleavings

Syscall A Syscall B

M There are a huge number of interleavings
P (e.g., more than 10°5)

100 inst. for each syscall N /4

Only a small number of interleavings

f %%\ ! cause a concurrency bug.

15

‘ Coverage metric for thread interleavings

® Challenge

o Alarge search space of thread interleavings

© Qurinterleaving coverage should
1) reduce the search space

2) capture “interesting” interleavings

16

‘ Characteristic of concurrency bugs

® Observation from a previous study [1]

o Most of concurrency bugs (97 out of 105) manifest depending on

the execution order of at most four memory accesses

[1] Lu, Shan, et al. "Learning from mistakes: a comprehensive study on real world concurrency bug characteristics."

Proceedings of the 13th international conference on Architectural support for programming languages and operating systems. 2008. Y

‘ Characteristic of concurrency bugs

® Observation from a previous study [1]

o Most of concurrency bugs (97 out of 105) manifest depending on

the execution order of at most four memory accesses

__

Syscall A Syscall B

if (flag)
init_ptr(ptr);

———————————————————

— o o e e e e e e e R e e mmm M e e M e e ——

=

- o e e e e e e e e -

Uninitialized access!

[1] Lu, Shan, et al. "Learning from mistakes: a comprehensive study on real world concurrency bug characteristics."

Proceedings of the 13th international conference on Architectural support for programming languages and operating systems. 2008. 18

‘ Characteristic of concurrency bugs

® Observation from a previous study [1]

o Most of concurrency bugs (97 out of 105) manifest depending on

the execution order of at most four memory accesses

__

The uninitialized access bug manifests i .(ﬂ.ag) ,
depending only on three instructions init_ptr(ptr) \ flag = 1;
if (flag) —

access_ptr(ptr);

S o e e e o e e e e M M e M M M e M M M e Gmm Mmm M e M Mmm M e M M M e R M M e e M e e e e

/——————————————————————————5
N —_——m—_-—_———_t—mtltth"t"t+btt"b"btbt”8"b”8"”"”8"b” "

[1] Lu, Shan, et al. "Learning from mistakes: a comprehensive study on real world concurrency bug characteristics."

Proceedings of the 13th international conference on Architectural support for programming languages and operating systems. 2008. o

‘ Characteristic of concurrency bugs

® Observation from a previous study [1]

o Most of concurrency bugs (97 out of 105) manifest depending on

the execution order of at most four memory accesses

®© Qur strategy: Segmentizing thread interleaving

o Decomposing thread interleaving into small interleaving segments

that consists of at most four memory accesses

[1] Lu, Shan, et al. "Learning from mistakes: a comprehensive study on real world concurrency bug characteristics."

Proceedings of the 13th international conference on Architectural support for programming languages and operating systems. 2008. 20

‘ Key idea: decomposing thread interleaving

Syscall A Syscall B

Se7?

100 inst. for each syscall N Va4

21

‘ Key idea: decomposing thread interleaving

Syscall A Syscall B

100 inst. for each syscall

22

‘ Key idea: decomposing thread interleaving

__

AY
1

i

__

Interleaving segment

23

‘ Key idea: decomposing thread interleaving

__

\
1

A

__

Interleaving segment

© Benefits
o Reducing the search space

o Trackinginteresting interleavings

24

‘ Key idea: decomposing thread interleaving

__

AY
1

A

__

Interleaving segment

Our interleaving coverage is based on interleaving segments

25

‘ SegFuzz

Single-thread fuzzing

Multi-thread fuzzing

Syscall A

Syscall B

27

‘ SegFuzz

Single-thread fuzzing

Inputs

®

Single-thread fuzzing

O

O

Explore execution paths
|dentify two system calls that

potentially cause a concurrency bug

Please check our paper!

28

‘ Our approach: SegFuzz

®

Multi-thread fuzzing

O

O

Explore thread interleavings

Utilizing interleaving coverage

called interleaving segment coverage

Multi-thread fuzzing

Syscall A

Syscall B

__

__

29

‘ Multi-thread fuzzing of SegFuzz

Mutation-based
Interleaving generator

Single-thread
fuzzing

Unexplored

A

interleaving
e

Interleaving segment

—

System calls

1

Executor

coverage
DR A

30

‘ Multi-thread fuzzing of SegFuzz

Tracking explored interleavings

Interleaving segment

coverage
I S —

31

‘ Interleaving segment coverage

——

Syscall A Syscall B
flag = 1
if (flag)
init_ptr(ptr);
if (flag)
access_ptr(ptr);

— o e e e e e e e R e e e M M e e Mmm M e M M M e M M M e G M e e e e e

32

‘ Interleaving segment coverage

——

SyscaIIA SyscaII B Syscall A Syscall B

@ ﬂag 1; xecution £ (flag)
if (ﬂag) | : init_ptr(ptr);

@ ' if (flag) ,
i (flag) access_ptr(ptr);

“
s

Whole thread interleaving

‘ Interleaving segment coverage

Syscqll A Syscgll B
@
@ /ﬂag= 1;
if (flag)
@
if (flag)
@
s

Whole thread interleaving

34

‘ Interleaving segment coverage

Syscqll A Syscgll B
@
@ /ﬂag =1,
if (flag) 5
(3

VWhole thread interleaving

Segment #1
2 flag = 1;

Interleaving segments
(each contains at most 4 inst.)

35

‘ Interleaving segment coverage

Syscall A Syscall B Segmenti.“ #1 ©
@ @) ‘/ﬂag:= 1;
L if (flag) |
(2) flag = 1; 3
if (flag) if (flag)
Segment #2 @
@ -~ flag=1
(4) if (flag)
Whole thread interleaving Interleaving segments

(each contains at most 4 inst.)

36

Syscall A

/ﬂ@zl;

ag

Syscall B

g

if (ﬂag)

0
s

Whole thread interleaving

‘ Interleaving segment coverage

(each contains at most 4 inst.)

Segment #1
)
2) flag = 1;
if (ﬂag) i
3
if (flag)
Segment #2 & Segmept #3 @
@ A/ﬂag? 1; @ A/flagl= 1;
if (Cﬂélg) if (gﬁg)
NG NG
Interleaving segments

37

‘ Interleaving segment coverage

®

Interleaving segment coverage

O

Collection of segments

(each contains at most 4 inst.)

Segment #1
)
2) flag = 1;
if (ﬂag) i
3
if (flag)
Segment #2 & Segmept #3 @
@ ‘/flag: 1; @ A/flagl= 1;
if (Cﬂélg) if (élsg)
NG NG
Interleaving segments

38

‘ Interleaving segment coverage

® Interleaving segment coverage Segment #1 0
o Collection of segments @ ‘/ﬂag.= 1:
if (flag) |
(3
if (flag)

‘ Interleaving segment coverage

® Interleaving segment coverage Segment #1 0
o Collection of segments @ ‘/ﬂag.= 1:
if (flag)
(3
if (flag)

There are more interleavings of
these instructions that we have not explored

(including the offending interleaving)

‘ Multi-thread fuzzing of SegFuzz

Mutation-based | Unexplored
Interleaving generator interleaving
e

Searching for unexplored interleavings

‘ Mutation-based interleaving generator

® Mutating interleavings within segments to generate unexplored interleavings

Segment #1
@
2 flag = 1;

‘ Mutation-based interleaving generator

®

Mutating interleavings within segments to generate unexplored interleavings

Segment #1

@ .

Mutate

Mutate

Mutated segment #1-1

(@
if (ﬂag) —

@

if (flag)

Mutated segment #1-2

e ’
if (flag)

ifflag))
| flag = 1;

43

‘ Mutation-based interleaving generator

®

Mutating interleavings within segments to generate unexplored interleavings

Segment #1

@ .

Mutate

Mutated segment #1-1

(2)

if (ﬂag) —

if (flag)

@

ag=1,

The concurrency bug occurs

when exploring this mutated segment

44

‘ Mutation-based interleaving generator

® Mutating interleavings within segments to generate unexplored interleavings

® Testing multiple mutated segments at one execution
o Recomposing mutated segments to determine how to schedule instructions

o Please check our paper!

45

‘ Evaluation

®

21 new concurrency bugs

in the Linux kernel

Crash Summary

general protection fault in vmci_host_poll

KASAN: use-after-free Read in cfusbl_device_notify
KASAN: use-after-free Read in slcan_receive buf

general protection fault in cttimeout_net_exit

KASAN: use-after-free Read in raw_notifier call chain
INFO: task hung in blk_trace_remove

INFO: task hung in blk_trace_setup

kernel BUG in pfkey_send_acquire

general protection fault in add_wait_queue_exclusive
KASAN: use-after-free Read in slip_ioctl

general protection fault in add_wait_queue

WARNING in isotp_tx_timer_handler

KASAN: use-after-free Read in snd_pcm_plug_read_transfer
Kernel BUG 1n find lock entries

KASAN: use-after-free Read in tcp_write_timer_handler
KASAN: use-after-free Read in event sched out

general protection fault in soft_cursor

KASAN: use-after-free Read in perf_event_groups_insert
BUG: unable to handle kernel paging request in usb_start_wait_urb
BUG: unable to handle kernel paging request in __kernfs_new_node
general protection fault in raw_seq_start

46

‘ Evaluation

®

21 new concurrency bugs

in the Linux kernel

Use-after-free

Crash Summary

general protection fault in vimci_host poll

KASAN: use-after-free Read in cfusbl_device_notify
:KASAN: use-after-free Read 1n slcan_receive buf
general protection fault in cttimeout_net_exit

:KASAN: use-after-free Read in raw_notifier call chain
INFO: task hung in blk_trace_remove

INFO: task hung in blk_trace_setup

kernel BUG in pfkey_send_acquire

general protection fault in add_wait_queue_exclusive
[_KASAN: use-after-free Read in slip_ioctl]
general protection fault in add_wait_queue

WARNING in isotp_tx_timer_handler

:KASAN: use-after-free Read in snd_pcm_plug_read_transfer

Kernel BUG 1n find_lock_entries

iKASAN: use-after-free Read in tcp_write_timer_handler

:KASAN: use-after-free Read in event _sched out

general protection fault in soft_cursor

KASAN: use-after-free Read in perf_event_groups_insert

BUG: unable to handle kernel paging request in usb_start_wait_urb
BUG: unable to handle kernel paging request in __kernfs_new_node
general protection fault in raw_seq_start

47

‘ Evaluation - Comparison study

© Compare against Showboard, KRace, and Syzkaller with 2 kernel concurrency bugs

®m SegFuzz m Snowboard m KRace m Syzkaller

10000
1000
100
o) (o} %) 9 2 A
65 179° 1% 0" NG R 1) o’ o
o o o? AT AT N) «9'
efl efl eﬂ QO fLO 7«0 e,?« @0 6‘\6
O\J G\J G\l O\Je’ O\Jel O\Je' Oq (ﬂ€' 02

48

‘ Evaluation - Comparison study

© Compare against Showboard, KRace, and Syzkaller with 2 kernel concurrency bugs

®m SegFuzz m Snowboard m KRace ® Syzkaller

SegFuzz discovers concurrency bugs 4.1x faster
than previous approaches

49

‘ Conclusion

® SegFuzz, a fuzzing framework to effectively discover kernel concurrency bugs

o Applying the problem decomposition strategy based on the previous finding

® A novel thread interleaving coverage called interleaving segment coverage

o Tracking explored thread interleavings

o Efficiently exploring unexplored thread interleavings

® Discovered 21 new concurrency bugs in the Linux kernel

50

SEGFUZZ: Segmentizing Thread Interleaving to
Discover Kernel Concurrency Bugs through Fuzzing

Thank You!

