
1Korea Advanced Institute of Science & Technology
2Seoul National University

SEGFUZZ: Segmentizing Thread Interleaving to
Discover Kernel Concurrency Bugs through Fuzzing

Dae R. Jeong1, Byoungyoung Lee2, Insik Shin1, Youngjin Kwon1

Kernel concurrency bugs

2

◉ Kernel concurrency bugs manifest depending on thread interleavings

Kernel concurrency bugs

3

◉ Kernel concurrency bugs manifest depending on thread interleavings

if (flag)
 access_ptr(ptr);

if (flag)
 init_ptr(ptr);

Interleaving 1

Syscall A Syscall B

flag = 1;

Kernel concurrency bugs

4

Syscall A Syscall B

if (flag)
 access_ptr(ptr);

if (flag)
 init_ptr(ptr);

Interleaving 2

flag = 1;

Uninitialized access!

◉ Kernel concurrency bugs manifest depending on thread interleavings

if (flag)
 access_ptr(ptr);

if (flag)
 init_ptr(ptr);

Interleaving 1

Syscall A Syscall B

flag = 1;

◉ Fuzzing explores the search space of the program by running random inputs

○ Conventionally focusing on exploring execution paths

■ Symbolic/concolic execution, static analysis, …

Fuzzing

5

◉ Fuzzing explores the search space of the program by running random inputs

○ Conventionally focusing on exploring execution paths

■ Symbolic/concolic execution, static analysis, …

◉ Recent approaches to identify concurrency bugs

○ Exploring execution path & thread interleavings

■ Razzer [S&P’19], Krace[S&P’20], Snowboard[SOSP’21], Conzzer[NDSS’22], …

○ Controlling thread interleavings by overriding the kernel scheduler

Fuzzing

6

◉ Coverage metric

○ Expressing the search space of the program

○ Guiding the generation of new test cases

Coverage-guided fuzzing

7

◉ Coverage metric

○ Expressing the search space of the program

○ Guiding the generation of new test cases

◉ Code coverage

○ Expressing the search space of execution paths

○ Ex) Branch coverage

Coverage-guided fuzzing

8

◉ Code coverage

○ Limited in expressing the search space of thread interleavings

Coverage-guided fuzzing

9

Thread 2Thread 1

A = 1;
if (A != 0)

print(A);

A = 2;

Thread 2Thread 1

A = 1;

if (A != 0)

print(A);

A = 2;

The same branch coverage but different outcomes

Interleaving 2Interleaving 1

◉ Coverage metric

○ Expressing the search space of the program

○ Guiding the generation of new test cases

◉ Code coverage

○ Expressing the search space for execution paths

○ Ex) Branch coverage

◉ Interleaving coverage

○ Expressing the search space for thread interleavings

○ Not well-studied area

Coverage-guided fuzzing

10

◉ Coverage metric

○ Expressing the search space of the program

○ Guiding the generation of new test cases

◉ Code coverage

○ Expressing the search space for execution paths

○ Ex) Branch coverage

◉ Interleaving coverage

○ Expressing the search space for thread interleavings

○ Not well-studied area

Coverage-guided fuzzing

11

We want to design and utilize interleaving coverage

◉ Challenge

○ A large search space of thread interleavings

Coverage metric for thread interleavings

12

Coverage metric for thread interleavings

13

100 inst. for each syscall

Syscall A Syscall B

… …

◉ Challenge

○ A large search space of thread interleavings

Coverage metric for thread interleavings

14

There are a huge number of interleavings
(e.g., more than 1058)100 inst. for each syscall

Syscall A Syscall B

… …

◉ Challenge

○ A large search space of thread interleavings

Coverage metric for thread interleavings

15

There are a huge number of interleavings
(e.g., more than 1058)100 inst. for each syscall

Syscall A Syscall B

… …

Only a small number of interleavings
cause a concurrency bug.

◉ Challenge

○ A large search space of thread interleavings

◉ Challenge

○ A large search space of thread interleavings

◉ Our interleaving coverage should

 1) reduce the search space

 2) capture “interesting” interleavings

Coverage metric for thread interleavings

16

Characteristic of concurrency bugs

◉ Observation from a previous study [1]

○ Most of concurrency bugs (97 out of 105) manifest depending on

the execution order of at most four memory accesses

17
[1] Lu, Shan, et al. "Learning from mistakes: a comprehensive study on real world concurrency bug characteristics."
Proceedings of the 13th international conference on Architectural support for programming languages and operating systems. 2008.

Characteristic of concurrency bugs

◉ Observation from a previous study [1]

○ Most of concurrency bugs (97 out of 105) manifest depending on

the execution order of at most four memory accesses

18

Syscall A Syscall B

if (flag)
 access_ptr(ptr);

if (flag)
 init_ptr(ptr);

flag = 1;

Uninitialized access!

[1] Lu, Shan, et al. "Learning from mistakes: a comprehensive study on real world concurrency bug characteristics."
Proceedings of the 13th international conference on Architectural support for programming languages and operating systems. 2008.

Uninitialized access!

if (flag)
 access_ptr(ptr);

Characteristic of concurrency bugs

19

Syscall A Syscall B

if (flag)
 init_ptr(ptr);

[1] Lu, Shan, et al. "Learning from mistakes: a comprehensive study on real world concurrency bug characteristics."
Proceedings of the 13th international conference on Architectural support for programming languages and operating systems. 2008.

◉ Observation from a previous study [1]

○ Most of concurrency bugs (97 out of 105) manifest depending on

the execution order of at most four memory accesses

flag = 1;

if (flag)
 access_ptr(ptr);

if (flag)
 init_ptr(ptr);

The uninitialized access bug manifests
depending only on three instructions

◉ Observation from a previous study [1]

○ Most of concurrency bugs (97 out of 105) manifest depending on

the execution order of at most four memory accesses

◉ Our strategy: Segmentizing thread interleaving

○ Decomposing thread interleaving into small interleaving segments

that consists of at most four memory accesses

Characteristic of concurrency bugs

20
[1] Lu, Shan, et al. "Learning from mistakes: a comprehensive study on real world concurrency bug characteristics."
Proceedings of the 13th international conference on Architectural support for programming languages and operating systems. 2008.

Key idea: decomposing thread interleaving

21

100 inst. for each syscall

Syscall A Syscall B

… …

Key idea: decomposing thread interleaving

22

100 inst. for each syscall

Syscall A Syscall B

… …

Key idea: decomposing thread interleaving

23

… …

Syscall A Syscall B

Interleaving segment

Key idea: decomposing thread interleaving

24

… …

Syscall A Syscall B

◉ Benefits

○ Reducing the search space

○ Tracking interesting interleavings

Interleaving segment

Key idea: decomposing thread interleaving

25

… …

Syscall A Syscall B

◉ Benefits

○ Reducing the search space

○ Tracking interesting interleavings

Interleaving segment

Our interleaving coverage is based on interleaving segments

SegFuzz

26

SegFuzz

27

cfg

Inputs

Single-thread fuzzing Multi-thread fuzzing

Syscall A Syscall B

SegFuzz

28

◉ Single-thread fuzzing

○ Explore execution paths

○ Identify two system calls that

potentially cause a concurrency bug

Please check our paper!

cfg

Inputs

Single-thread fuzzing

Our approach: SegFuzz

29

◉ Multi-thread fuzzing

○ Explore thread interleavings

○ Utilizing interleaving coverage

■ called interleaving segment coverage

Multi-thread fuzzing

Syscall A Syscall B

Multi-thread fuzzing of SegFuzz

30

Mutation-based
Interleaving generator

Executor

Interleaving segment
coverage

Unexplored
interleaving

Bug

System callsSingle-thread
fuzzing

Multi-thread fuzzing of SegFuzz

31

Mutation-based
Interleaving generator

Executor
Unexplored
interleaving

Bug

System callsSingle-thread
fuzzing

Tracking explored interleavings

Interleaving segment
coverage

Interleaving segment coverage

32

Syscall A Syscall B

if (flag)
 access_ptr(ptr);

if (flag)
 init_ptr(ptr);

flag = 1;

Interleaving segment coverage

33

Syscall BSyscall A

1

5

4

Whole thread interleaving

flag = 1;

if (flag)

if (flag)

2

3

Execution

Syscall A Syscall B

if (flag)
 access_ptr(ptr);

if (flag)
 init_ptr(ptr);

flag = 1;

Interleaving segment coverage

34

Syscall BSyscall A

flag = 1;

if (flag)

if (flag)

Whole thread interleaving

1

5

4

2

3

5

4

Interleaving segment coverage

35

Whole thread interleaving Interleaving segments
(each contains at most 4 inst.)

Segment #1

flag = 1;
if (flag)

if (flag)
3

2
1

Syscall BSyscall A

1

flag = 1;

if (flag)

if (flag)

2

3

if (flag)
3

Interleaving segment coverage

36

Interleaving segments
(each contains at most 4 inst.)

Segment #2

5

flag = 1;
1

if (flag)
4

2

Syscall BSyscall A

1

5

4

flag = 1;

if (flag)
2

Whole thread interleaving

Segment #1

flag = 1;
if (flag)

if (flag)
3

2
1

if (flag)
2

Interleaving segment coverage

37

Whole thread interleaving Interleaving segments
(each contains at most 4 inst.)

Segment #3

5

flag = 1;
1

if (flag)
4

3

Interleaving segments
(each contains at most 4 inst.)

Segment #2

5

flag = 1;
1

if (flag)
4

2

Syscall BSyscall A

1

5

4

flag = 1;

Whole thread interleaving

Segment #1

flag = 1;
if (flag)

if (flag)
3

2
1

if (flag)
3

Interleaving segment coverage

38

Interleaving segments
(each contains at most 4 inst.)

◉ Interleaving segment coverage

○ Collection of segments

Segment #3

5

flag = 1;
1

if (flag)
4

3

Segment #2

5

flag = 1;
1

if (flag)
4

2

Segment #1

flag = 1;
if (flag)

if (flag)
3

2
1

Interleaving segment coverage

39

◉ Interleaving segment coverage

○ Collection of segments

Segment #1

flag = 1;
if (flag)

if (flag)
3

2
1

Interleaving segment coverage

40

◉ Interleaving segment coverage

○ Collection of segments

There are more interleavings of
these instructions that we have not explored

(including the offending interleaving)

Segment #1

flag = 1;
if (flag)

if (flag)
3

2
1

Multi-thread fuzzing of SegFuzz

41

Executor

Interleaving segment
coverage

Bug

System callsSingle-thread
fuzzing

Searching for unexplored interleavings

Unexplored
interleaving

Mutation-based
Interleaving generator

Mutation-based interleaving generator

42

◉ Mutating interleavings within segments to generate unexplored interleavings

Segment #1

flag = 1;
if (flag)

if (flag)
3

2
1

Mutation-based interleaving generator

43

◉ Mutating interleavings within segments to generate unexplored interleavings

Mutated segment #1-1

if (flag)
3 flag = 1;

if (flag)
2

1

Mutated segment #1-2

if (flag)
2

flag = 1;

if (flag)
3

Mutate

Mutate

1

Segment #1

flag = 1;
if (flag)

if (flag)
3

2
1

Mutation-based interleaving generator

44

Segment #1

flag = 1;
if (flag)

if (flag)

◉ Mutating interleavings within segments to generate unexplored interleavings

Mutated segment #1-2

if (flag)

flag = 1;

if (flag)

Mutation

Mutated segment #1-1

if (flag)

flag = 1;

if (flag)

The concurrency bug occurs
when exploring this mutated segment

Mutate

3

2

1

3

2
1

Mutation-based interleaving generator

45

◉ Mutating interleavings within segments to generate unexplored interleavings

◉ Testing multiple mutated segments at one execution

○ Recomposing mutated segments to determine how to schedule instructions

○ Please check our paper!

Evaluation

◉ 21 new concurrency bugs

in the Linux kernel

46

Evaluation

◉ 21 new concurrency bugs

in the Linux kernel

47

Use-after-free

Evaluation - Comparison study

◉ Compare against Snowboard, KRace, and Syzkaller with 9 kernel concurrency bugs

48

Evaluation - Comparison study

◉ Compare against Snowboard, KRace, and Syzkaller with 9 kernel concurrency bugs

49

SegFuzz discovers concurrency bugs 4.1x faster
than previous approaches

Conclusion

◉ SegFuzz, a fuzzing framework to effectively discover kernel concurrency bugs

○ Applying the problem decomposition strategy based on the previous finding

◉ A novel thread interleaving coverage called interleaving segment coverage

○ Tracking explored thread interleavings

○ Efficiently exploring unexplored thread interleavings

◉ Discovered 21 new concurrency bugs in the Linux kernel

50

SEGFUZZ: Segmentizing Thread Interleaving to
Discover Kernel Concurrency Bugs through Fuzzing

Thank You!

