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if (flag)
    access_ptr(ptr);

if (flag)
    init_ptr(ptr);

Interleaving 1

Syscall A Syscall B
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Uninitialized access!
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◉ Fuzzing explores the search space of the program by running random inputs

○ Conventionally focusing on exploring execution paths

■ Symbolic/concolic execution, static analysis, …
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◉ Fuzzing explores the search space of the program by running random inputs

○ Conventionally focusing on exploring execution paths

■ Symbolic/concolic execution, static analysis, …

◉ Recent approaches to identify concurrency bugs

○ Exploring execution path & thread interleavings

■ Razzer [S&P’19], Krace[S&P’20], Snowboard[SOSP’21], Conzzer[NDSS’22], …

○ Controlling thread interleavings by overriding the kernel scheduler

Fuzzing
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◉ Coverage metric

○ Expressing the search space of the program

○ Guiding the generation of new test cases

Coverage-guided fuzzing
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◉ Code coverage

○ Limited in expressing the search space of thread interleavings

Coverage-guided fuzzing
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Thread 2Thread 1

A = 1;
if (A != 0) 

print(A);

A = 2;

Thread 2Thread 1

A = 1;

if (A != 0)

print(A);

A = 2;

The same branch coverage but different outcomes

Interleaving 2Interleaving 1



◉ Coverage metric

○ Expressing the search space of the program

○ Guiding the generation of new test cases

◉ Code coverage

○ Expressing the search space for execution paths

○ Ex) Branch coverage

◉ Interleaving coverage

○ Expressing the search space for thread interleavings

○ Not well-studied area
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We want to design and utilize interleaving coverage



◉ Challenge

○ A large search space of thread interleavings

Coverage metric for thread interleavings
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Coverage metric for thread interleavings
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100 inst. for each syscall

Syscall A Syscall B

… …

◉ Challenge

○ A large search space of thread interleavings
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There are a huge number of interleavings
(e.g., more than 1058)100 inst. for each syscall

Syscall A Syscall B

… …

◉ Challenge

○ A large search space of thread interleavings



Coverage metric for thread interleavings
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There are a huge number of interleavings
(e.g., more than 1058)100 inst. for each syscall

Syscall A Syscall B

… …

Only a small number of interleavings 
cause a concurrency bug.

◉ Challenge

○ A large search space of thread interleavings



◉ Challenge

○ A large search space of thread interleavings

◉ Our interleaving coverage should

   1) reduce the search space

   2) capture “interesting” interleavings 

Coverage metric for thread interleavings
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Characteristic of concurrency bugs

◉ Observation from a previous study [1]

○ Most of concurrency bugs (97 out of 105) manifest depending on

the execution order of at most four memory accesses

17
[1] Lu, Shan, et al. "Learning from mistakes: a comprehensive study on real world concurrency bug characteristics."
Proceedings of the 13th international conference on Architectural support for programming languages and operating systems. 2008.
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Syscall A Syscall B

if (flag)
    access_ptr(ptr);

if (flag)
    init_ptr(ptr);

flag = 1;

Uninitialized access!

[1] Lu, Shan, et al. "Learning from mistakes: a comprehensive study on real world concurrency bug characteristics."
Proceedings of the 13th international conference on Architectural support for programming languages and operating systems. 2008.



Uninitialized access!

if (flag)
    access_ptr(ptr);

Characteristic of concurrency bugs
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Syscall A Syscall B

if (flag)
    init_ptr(ptr);

[1] Lu, Shan, et al. "Learning from mistakes: a comprehensive study on real world concurrency bug characteristics."
Proceedings of the 13th international conference on Architectural support for programming languages and operating systems. 2008.

◉ Observation from a previous study [1]

○ Most of concurrency bugs (97 out of 105) manifest depending on

the execution order of at most four memory accesses

flag = 1;

if (flag)
    access_ptr(ptr);

if (flag)
    init_ptr(ptr);

The uninitialized access bug manifests
depending only on three instructions



◉ Observation from a previous study [1]

○ Most of concurrency bugs (97 out of 105) manifest depending on

the execution order of at most four memory accesses

◉ Our strategy: Segmentizing thread interleaving

○ Decomposing thread interleaving into small interleaving segments

that consists of at most four memory accesses

Characteristic of concurrency bugs
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[1] Lu, Shan, et al. "Learning from mistakes: a comprehensive study on real world concurrency bug characteristics."
Proceedings of the 13th international conference on Architectural support for programming languages and operating systems. 2008.
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Syscall A Syscall B

Interleaving segment 
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◉ Benefits

○ Reducing the search space

○ Tracking interesting interleavings

Interleaving segment 



Key idea: decomposing thread interleaving
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… …

Syscall A Syscall B

◉ Benefits

○ Reducing the search space

○ Tracking interesting interleavings

Interleaving segment 

Our interleaving coverage is based on interleaving segments



SegFuzz
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SegFuzz
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cfg

Inputs

Single-thread fuzzing Multi-thread fuzzing

Syscall A Syscall B



SegFuzz
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◉ Single-thread fuzzing

○ Explore execution paths

○ Identify two system calls that

potentially cause a concurrency bug

Please check our paper!

cfg

Inputs

Single-thread fuzzing



Our approach: SegFuzz
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◉ Multi-thread fuzzing

○ Explore thread interleavings

○ Utilizing interleaving coverage

■ called interleaving segment coverage

Multi-thread fuzzing

Syscall A Syscall B



Multi-thread fuzzing of SegFuzz
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Mutation-based
Interleaving generator

Executor

Interleaving segment
coverage

Unexplored 
interleaving

Bug

System callsSingle-thread
fuzzing



Multi-thread fuzzing of SegFuzz
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Mutation-based
Interleaving generator

Executor
Unexplored 
interleaving

Bug

System callsSingle-thread
fuzzing

Tracking explored interleavings

Interleaving segment
coverage



Interleaving segment coverage
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Syscall A Syscall B

if (flag)
    access_ptr(ptr);

if (flag)
    init_ptr(ptr);

flag = 1;



Interleaving segment coverage
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Syscall BSyscall A

1

5

4

Whole thread interleaving

flag = 1;

if (flag)

if (flag)

2

3

Execution

Syscall A Syscall B

if (flag)
    access_ptr(ptr);

if (flag)
    init_ptr(ptr);

flag = 1;



Interleaving segment coverage
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Syscall BSyscall A

flag = 1;

if (flag)

if (flag)

Whole thread interleaving

1

5

4

2

3
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Interleaving segment coverage
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Whole thread interleaving Interleaving segments
(each contains at most 4 inst.)

Segment #1

flag = 1;
if (flag)

if (flag)
3

2
1

Syscall BSyscall A

1

flag = 1;

if (flag)

if (flag)

2

3



if (flag)
3

Interleaving segment coverage
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Interleaving segments
(each contains at most 4 inst.)

Segment #2

5

flag = 1;
1

if (flag)
4

2

Syscall BSyscall A

1

5

4

flag = 1;

if (flag)
2

Whole thread interleaving

Segment #1

flag = 1;
if (flag)

if (flag)
3

2
1



if (flag)
2

Interleaving segment coverage
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Whole thread interleaving Interleaving segments
(each contains at most 4 inst.)

Segment #3

5

flag = 1;
1

if (flag)
4

3

Interleaving segments
(each contains at most 4 inst.)

Segment #2

5

flag = 1;
1

if (flag)
4

2

Syscall BSyscall A

1

5

4

flag = 1;

Whole thread interleaving

Segment #1

flag = 1;
if (flag)

if (flag)
3

2
1

if (flag)
3



Interleaving segment coverage
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Interleaving segments
(each contains at most 4 inst.)

◉ Interleaving segment coverage

○ Collection of segments

Segment #3

5

flag = 1;
1

if (flag)
4

3

Segment #2

5

flag = 1;
1

if (flag)
4

2

Segment #1

flag = 1;
if (flag)

if (flag)
3

2
1



Interleaving segment coverage
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◉ Interleaving segment coverage

○ Collection of segments

Segment #1

flag = 1;
if (flag)

if (flag)
3

2
1



Interleaving segment coverage
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◉ Interleaving segment coverage

○ Collection of segments

There are more interleavings of
these instructions that we have not explored

(including the offending interleaving)

Segment #1

flag = 1;
if (flag)

if (flag)
3

2
1



Multi-thread fuzzing of SegFuzz
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Executor

Interleaving segment
coverage

Bug

System callsSingle-thread
fuzzing

Searching for unexplored interleavings

Unexplored 
interleaving

Mutation-based
Interleaving generator



Mutation-based interleaving generator

42

◉ Mutating interleavings within segments to generate unexplored interleavings

Segment #1

flag = 1;
if (flag)

if (flag)
3

2
1



Mutation-based interleaving generator

43

◉ Mutating interleavings within segments to generate unexplored interleavings

Mutated segment #1-1

if (flag)
3 flag = 1;

if (flag)
2

1

Mutated segment #1-2

if (flag)
2

flag = 1;

if (flag)
3

Mutate

Mutate

1

Segment #1

flag = 1;
if (flag)

if (flag)
3

2
1



Mutation-based interleaving generator
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Segment #1

flag = 1;
if (flag)

if (flag)

◉ Mutating interleavings within segments to generate unexplored interleavings

Mutated segment #1-2

if (flag)

flag = 1;

if (flag)

Mutation

Mutated segment #1-1

if (flag)

flag = 1;

if (flag)

The concurrency bug occurs
when exploring this mutated segment

Mutate

3

2

1

3

2
1



Mutation-based interleaving generator
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◉ Mutating interleavings within segments to generate unexplored interleavings

◉ Testing multiple mutated segments at one execution

○ Recomposing mutated segments to determine how to schedule instructions

○ Please check our paper!



Evaluation

◉ 21 new concurrency bugs

in the Linux kernel
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Use-after-free



Evaluation - Comparison study

◉ Compare against Snowboard, KRace, and Syzkaller with 9 kernel concurrency bugs
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Evaluation - Comparison study

◉ Compare against Snowboard, KRace, and Syzkaller with 9 kernel concurrency bugs
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SegFuzz discovers concurrency bugs 4.1x faster
than previous approaches



Conclusion

◉ SegFuzz, a fuzzing framework to effectively discover kernel concurrency bugs

○ Applying the problem decomposition strategy based on the previous finding

◉ A novel thread interleaving coverage called interleaving segment coverage

○ Tracking explored thread interleavings

○ Efficiently exploring unexplored thread interleavings

◉ Discovered 21 new concurrency bugs in the Linux kernel
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SEGFUZZ: Segmentizing Thread Interleaving to
Discover Kernel Concurrency Bugs through Fuzzing

Thank You!


