Ozz: Identifying Kernel Out-of-Order Concurrency Bugs with
In-Vivo Memory Access Reordering

Dae R. Jeong!?, Yewon Choi4, Byoungyoung Lee?, Insik Shin2, Youngjin Kwon?2

1Georgia Institute of Technology
2Korea Advanced Institute of Science & Technology

3Seoul National University

Georgia KAIST
Tech.

Out-of-Order Concurrency Bugs

Dae R. Jeong!?, Yewon Choi4, Byoungyoung Lee?, Insik Shin2, Youngjin Kwon?2

1Georgia Institute of Technology
2Korea Advanced Institute of Science & Technology

3Seoul National University

Georgia KKAIST
Tech.

Concurrency bugs caused by
' Out-of-order execution |

The culprit!
Syscall A Syscall B
Syscall A initializes ptr ptr = malloc();
then announces it is ready . ready = true;
if (ready) If it is ready,
*otr=1 Syscall B accesses ptr

— o o o o o

Okay, Syscall B seems to access ptr only if it is ready
In Apple Silicon M3, however... Why?

Concurrency bugs caused by
Out-of-order execution

In reality... 77T T \
4 : Syscall A Syscall B :

Syscall A announces it is ready ready = true;

Wait... it seems something is miésin ? . i .
3 ~1ng if (ready) ; Okay, it is ready,

— o

ptr=1 | am going to access ptr

— o

What is the correct implementation?

.

Memory barrier to prevent out-of-order execution

——

Syscall A
ptr = malloc();
' memory_barrier(); > | he processor guarantees that
" ready = true; ptr is initialized

before setting ready to true

If developers misses memory barriers,
out-of-order execution causes concurrency bugs

Machines exhibiting this behavior

ARM-based machines are getting more popular these days

Memory ordering is hard to think about,

and people won't even realize that they may be wrong.
- Linux developer

Machines exhibiting this behavior

ARM-based machines are getting more popular these days

[SRU, Trusty,1/1] tty: fix stall caused by missing memory

barrier in drivers/tty/n

Message ID f00642df1c338f1dbe2bc9ab8a8aaeef7 1] xen MiSSing memory barriers Dos (XSA-340)

State New

Headers

HIGH Nessus Plugin ID 144856

show

Commit Message

_ Information
Joseph Salisbury

From: Kosuke Tatsukawa <tatsu@ab.jp.nec.com>

Synopsis

BugLink: http://bugs.launchpad.net/bugs/15128

My colleague ran into a program stall on a x8
n_tty_read() was waiting for data even if the
in the pty. kernel stack for the stuck proce
#0 [ffff88303d107b58] __ schedule at ffffffff
#1 [ffff88303d107bd@] schedule at ffffffff8l
#2 [ffff88303d107bf@] schedule_timeout at ff
#3 [ffff88303d107ca@] wait_woken at ffffffff
#4 [ffff88303d107ce@] n_tty_read at ffffffff
#5 [ffff88303d107dd@] tty_read at ffffffff81l
#6 [ffff88303d107e20] _ vfs_read at ffffffff
#7 [ffff88303d107ec@] vfs_read at ffffffff8l
#8 [ffff88303d107f00] sys_read at ffffffff81l
#9 [ffff88303d107f50] entry_SYSCALL_64_fastp

The remote Xen hypervisor installation is missing a security upt

Description

A denial of service (DoS) vulnerability exists in Xen servers whe
to a missing memory barrier. An authenticated, local attacker
resulting in a Denial of Service (DoS).

AKCVE-2021-29650 Detail
MODIFIED

This vulnerability has been modified since it was last analyzed by the
NVD. It is awaiting reanalysis which may result in further changes to the

information provided.

Description

The goal of this work is to identify
concurrency bugs that are caused by missing memory barriers

Challenges in identifying out-of-order bugs

000 bugs manifests depending on two types of non-deterministic behaviors

a g>‘ R f®\‘ N

Thread interleaving Out-of-order execution
The order of memory accesses The order of memory accesses
between multiple threads inside a single thread

- / . /

Challenges in identifying out-of-order bugs

000 bugs manifests depending on two types of non-deterministic behaviors

O

. O>‘ "\ Previous work:
- DataCollider [OSDI’10], SKI [OSDI’14],
Thread interleaving Razzer [S&P’19], Snowboard [SOSP’21], ...

The order of memory accesses .
between multiple threads - Various methods are used

_ -/ (e.g., breakpoints, suspending vCPUs...)

.

Challenges in identifying out-of-order bugs

000 bugs manifests depending on two types of non-deterministic behaviors

No approach has been proposed to / 8\‘ N\

control out-of-order execution

Out-of-order execution

. The order of memory accesses

the observation of out-of-order execution! _ %

Challenges in identifying out-of-order bugs

Controlling thread interleaving obscures the effect of out-of-order execution

Syscall A Syscall B

" ptr = malloc():
BT | ready = true;
BP acts as a memory barria’\

if (ready)
*ntr=1

ptr is always initialized...

A new method is required to control out-of-order execution

In this work, we introduce...

OEMU

- A mechanism to tame the non-deterministic behavior of out-of-order execution
during runtime

Ozz

- A kernel fuzzer tailored to find OoO bugs by deterministically controlling
- Out-of-order execution through OEMU, and
- Thread interleaving thruugh a custom scheduler from a previous work?

1: Jeong, Dae R., Byoungyoung Lee, Insik Shin, and Youngjin Kwon.
"Segfuzz: Segmentizing thread interleaving to discover kernel concurrency bugs through fuzzing." In 2023 IEEE Symposium on Security and Privacy (SP).

In this work, we introduce...

OEMU

- A mechanism to tame the non-deterministic behavior of out-of-order execution
during runtime

1: Jeong, Dae R., Byoungyoung Lee, Insik Shin, and Youngjin Kwon.
"Segfuzz: Segmentizing thread interleaving to discover kernel concurrency bugs through fuzzing." In 2023 IEEE Symposium on Security and Privacy (SP).

OEMU

A mechanism to control out-of-order execution during runtime
- Consisting of a compiler pass and callback functions

——

X=1: » store value(&X, 1);
, r1=Y: ~ rl =load_value(&Y);,
S | Compile S J
Source code Compiled binary

Providing two primitive operations
- Delayed store operation
- Versioned load operation

Delayed store operation

Emulating how hardware reorders store operations

Store buffer

- A small hardware component that temporary
holds the results of store operations

w0 | [cur
FA-A
__buffer buffer

{ Memory }

- It may change the order in which the results
of store operations are written to memory

-=> OEMU emulates the store buffer!

4

Delayed store operation

through emulating the store buffer

During runtime...

——

Syscall A
We want to reorder .
the exec. order B = A . A: ptr = malloc();
. B: ready = true;

We instruct the store buffer to : i :
1) hold the value of ptr i | AR X
2) flush the value of ready ' Nl -

ptr ready

uninit. | false

Memory

Delayed store operation

through emulating the store buffer

During runtime...

——

Syscall A
We want to reorder .
the exec. order B = A . A: ptr = malloc();
" B: ready| = true;

We instruct the store buffer to <ptr, Sddr> | :
1) hold the value of ptr i | AR X
2) flush the value of ready ' Nl -

ptr ready

uninit. | false

Memory

Delayed store operation

through emulating the store buffer

During runtime...

——

Syscall A
We want to reorder .
the exec. order B = A . A: ptr = malloc();
. B: ready = true;

We instruct the store buffer to <ptr, f"ddr>
1) hold the value of ptr : .)
2) flush the value of ready ' ’ SRR .

———————————————

ptr ready
uninit. | true

Memory

Delayed store operation

through emulating the store buffer

During runtime...

——

Syscall A Syscall B
We want to reorder .
the exec. order B = A . A: ptr = malloc();
. B: ready = true;

We instruct the store buffer to <ptr, addr>

1) hold the value of ptr i <ready, true> *1

2) flush the value of ready ! S A i 3

ptr ready
uninit. | true

Memory

Versioned load operation

Genuine architectural behavior

__

A processor may read memory ahead of previous instructions

Syscall A Syscall B Ex) reading the address of ptr before ready in Syscall B

Read the invalid addr of ptr

ptr = malloc(); <
. memory_barrier();
. ready = true;
'f - g,::sg’;qu i*" Another memory barrier is needed here!

e o o o o o o -

Versioned load operation

Emulating the architectural behavior

__

A processor may read memory ahead of previous instructions

Syscall A Syscall B Ex) reading the address of ptr before ready in Syscall B

Record the invalid addr of ptr

ptr = malloc(); <
| mezmiyt_bar'rler(); A versioned load operation emulates this hardware behavior
 ready = true; - |t allows a load operation to read an old version of the value
if (ready)
, ptr=1 OEMU manages multiple versions of a value
Tttt may read the old and invalid Please check the paper for detail!
address of ptr

.

In this work, we introduce...

Ozz

- A kernel fuzzer tailored to find OoO bugs by deterministically controlling
- Out-of-order execution through OEMU, and
- Thread interleaving through a custom scheduler from a previous work?

1: Jeong, Dae R., Byoungyoung Lee, Insik Shin, and Youngjin Kwon.
"Segfuzz: Segmentizing thread interleaving to discover kernel concurrency bugs through fuzzing." In 2023 IEEE Symposium on Security and Privacy (SP).

Ozz

A kernel fuzzer tailored to identify OoO bugs through two steps
- Step 1: Running single-threaded inputs to dynamically profile memory accesses
- Step 2: Running multi-threaded inputs to find OoO bugs

—— o - o o - — oy, — o o e e e e e e e e e e e e —— e e ey,

(Sequential Input)

| (Sequential Input

| Sequentlal Input

=

| fd =syscall A(x, y)
| syscall B(fd, z) |/
i syscall C(fd, w) g

Thread Out-of-order :
interleaving execution |

__

N o o e e e o o e o o o e o o o = = 7
S N ———————————————————————

om T mm mm mm Em mm mm mm mm e Em Em mm e Em

Step 1: Profiling memory accesses

|
(Sequential Input
)
Sequential Input
)

Sequential Input
fd =syscall A(x, y)

syscall B(fd, z) —
syscall C(fd, w) —
() é)
fd = syscall A(x,y) syscall B(fd, z)
N\ J \ J

S o e e e e R e e R M e e mmm M e e mmm M M e Mmm M e e Mmm M M e Gmm G e e mmm M e e mmm M e e G e e e -

7/
o e o o e e e e O e e e e e e e e e e e e e e e e

Ozz utilizes fuzzing to generate sequential inputs
- Exploring execution paths as much as possible

- Dynamically tracing memory accesses of system calls

Select system call pairs accessing shared memory objects

- Ozz will run them concurrently in Step 2

.

Step 2: Finding Oo0O bugs

. 1. Guess where a memory barrier is missing
i Syscall A Syscall B 7
: How?
- memory_barrier(); 2. Execute instructions in a way that would

" ready = true; | ' ' '
! — : not happen if the memory barrier existed

If a memory barrier existed, = i (read

the store to ptr would not be delayed .f“(; """ X) ;o
. _ptr=1 1
N Uninitialized access! 3. Observe whether the kernel malfunctions

4

Step 2: Finding Oo0O bugs

Guess where a memory barrier is missing

Maximizing the number of reordered memory accesses

e mm mm mm mm mm mm mm Em o mm mm Em o Em mm Em o mm mm Em o Em mm Em o Em mm Em o Em mm Em o Em mm Em o Em mm Em o mm M Em mm mm M Em mm Em mm Em e Em mm Em Em Em mm Em o mm Emm Em mm Em o Em

Syscall A Syscall B

Coce 1 ' ptr->len = len;
ase 2" ptr->ops = &ops:

Case 2 T2 ready = true;

if (ready) {
len = ptr->len; i
ptr->ops->confirm(len); !

The more execution deviates from a sequential order,

the harder it becomes to reason about

Step 2: Finding Oo0O bugs

Guess where a memory barrier is missing

Maximizing the number of reordered memory accesses

Syscall A Syscall B

Case 1 ptr->len = len; Delayed by OEMU
ase <" ptr->ops = &ops;

. ready = true;
T

Enforced by the custom scheduler if (ready) {

len = ptr->len; |
ptr->ops->confirm(len);

Step 2: Finding Oo0O bugs

Guess where a memory barrier is missing

Maximizing the number of reordered memory accesses

e mm mm mm mm mm mm mm Em o mm mm Em o Em mm Em o mm mm Em o Em mm Em o Em mm Em o Em mm Em o Em mm Em o Em mm Em o mm M Em mm mm M Em mm Em mm Em e Em mm Em Em Em mm Em o mm Emm Em mm Em o Em

Syscall A Syscall B

~ &0pST Delayed by OEMU
T

Enforced by the custom scheduler if (ready) {

len = ptr->len; i
ptr->ops->confirm(len); !

In Case2, more memory accesses are reordered than in Case 1

Ozz prioritizes Case 2 as it is harder for developers to reason about

Evaluation

Finding unknown bugs / reproducing known bugs

We found 11 new Oo0O bugs in the Linux kernel

- Some were found in popular subsystemssuch as TLS or eBPF
- We reported all of them, and they were accordingly patched by the kernel developers

Subsystem Summary

RDS KASAN: slab-out-of-bounds Read in rds_loop_xmit

watchqueue BUG: unable to handle kernel NULL pointer dereference in _find_first_bit

VMCI general protection fault in add_wait_queue

XDP BUG: unable to handle kernel NULL pointer dereference in xsk_poll

TLS BUG: unable to handle kernel NULL pointer dereference in tls_getsockopt

BPF BUG: unable to handle kernel NULL pointer dereference in sk_psock_verdict_data_ready
XDP BUG: unable to handle kernel NULL pointer dereference in xsk_generic_xmit

SMC BUG: unable to handle kernel NULL pointer dereference in connect

TLS BUG: unable to handle kernel NULL pointer dereference in tls_setsockopt

SMC KASAN: null-ptr-deref Write in fput

GSM BUG: unable to handle kernel NULL pointer dereference in gsm_dlci_config

Evaluation

Finding unknown bugs / reproducing known bugs

We found 11 new Oo0O bugs in the Linux kernel
- Some were found in popular subsystemssuch as TLS or eBPF
- We reported all of them, and they were accordingly patched by the kernel developers

We show OMEU/Ozz can reproduce 8 out of 2 known OoO bugs

- The one failing case involves another non-deterministic behavior, thread migration

Please check our paper for more evaluation

Conclusion

Our work introduces
- OEMU

A mechanism to tame the non-deterministic behavior of out-of-order execution during runtime

- Ozz

A kernel fuzzer tailored to find OoO bugs by deterministically controlling
Out-of-order execution through OEMU, and
Thread interleaving through a custom scheduler from a previous work

Ozz finds 11 new out-of-order concurrency bugs in the Linux kernel

.

Ozz: Identifying Kernel Out-of-Order Concurrency Bugs
with In-Vivo Memory Access Reordering

	Slide 1: Ozz: Identifying Kernel Out-of-Order Concurrency Bugs with In-Vivo Memory Access Reordering
	Slide 2: Ozz: Identifying Kernel Out-of-Order Concurrency Bugs with In-Vivo Memory Access Reordering
	Slide 3: Concurrency bugs caused by Out-of-order execution
	Slide 4: Concurrency bugs caused by Out-of-order execution
	Slide 5: Memory barrier to prevent out-of-order execution
	Slide 6: Machines exhibiting this behavior
	Slide 7: Machines exhibiting this behavior
	Slide 8: Challenges in identifying out-of-order bugs
	Slide 9: Challenges in identifying out-of-order bugs
	Slide 10: Challenges in identifying out-of-order bugs
	Slide 11: Challenges in identifying out-of-order bugs
	Slide 12: In this work, we introduce…
	Slide 13: In this work, we introduce…
	Slide 14: OEMU
	Slide 15: Delayed store operation
	Slide 16: Delayed store operation
	Slide 17: Delayed store operation
	Slide 18: Delayed store operation
	Slide 19: Delayed store operation
	Slide 20: Versioned load operation
	Slide 21: Versioned load operation
	Slide 22: In this work, we introduce…
	Slide 23: Ozz
	Slide 24: Step 1: Profiling memory accesses
	Slide 25: Step 2: Finding OoO bugs
	Slide 26: Step 2: Finding OoO bugs
	Slide 27: Step 2: Finding OoO bugs
	Slide 28: Step 2: Finding OoO bugs
	Slide 29: Evaluation
	Slide 30: Evaluation
	Slide 31: Conclusion
	Slide 32: Ozz: Identifying Kernel Out-of-Order Concurrency Bugs with In-Vivo Memory Access Reordering

