
Ozz: Identifying Kernel Out-of-Order Concurrency Bugs with 
In-Vivo Memory Access Reordering

Dae R. Jeong12, Yewon Choi2, Byoungyoung Lee3, Insik Shin2, Youngjin Kwon2

1Georgia Institute of Technology
2Korea Advanced Institute of Science & Technology
3Seoul National University



Ozz: Identifying Kernel Out-of-Order Concurrency Bugs with 
In-Vivo Memory Access Reordering

Dae R. Jeong12, Yewon Choi2, Byoungyoung Lee3, Insik Shin2, Youngjin Kwon2

1Georgia Institute of Technology
2Korea Advanced Institute of Science & Technology
3Seoul National University



Concurrency bugs caused by
Out-of-order execution

3

ptr = malloc();
ready = true;

Syscall A Syscall B

Syscall A initializes ptr
then announces it is ready

if (ready)
*ptr = 1

If it is ready,
Syscall B accesses ptr

Okay, Syscall B seems to access ptr only if it is ready

In Apple Silicon M3, however… What?

Uninitialized access!

Why?

The culprit!



Concurrency bugs caused by
Out-of-order execution

4

ptr = malloc();
ready = true;

Syscall A Syscall B

Syscall A announces it is ready

if (ready)
*ptr = 1

Okay, it is ready,
I am going to access ptr

Uninitialized access!

In reality…

What is the correct implementation?

Wait… it seems something is missing?



Memory barrier to prevent out-of-order execution

5

Syscall A Syscall B

if (ready)
*ptr = 1

ptr = malloc();

ready = true;
The processor guarantees that
     ptr is initialized
     before setting ready to true 

If developers misses memory barriers,
out-of-order execution causes concurrency bugs

memory_barrier();



Memory ordering is hard to think about,
and people won't even realize that they may be wrong.
                                        - Linux developer

Machines exhibiting this behavior

6

ARM-based machines are getting more popular these days



Memory ordering is hard to think about,
and people won't even realize that they may be wrong.
                                        - Linux developer

Machines exhibiting this behavior

7

ARM-based machines are getting more popular these days

The goal of this work is to identify
concurrency bugs that are caused by missing memory barriers



Challenges in identifying out-of-order bugs

8

Thread interleaving

The order of memory accesses 
between multiple threads

Out-of-order execution

The order of memory accesses 
inside a single thread

OoO bugs manifests depending on two types of non-deterministic behaviors



Challenges in identifying out-of-order bugs

9

Thread interleaving

The order of memory accesses 
between multiple threads

Out-of-order execution

The order of memory accesses 
inside a single thread

OoO bugs manifests depending on two types of non-deterministic behaviors

Previous work:
  - DataCollider [OSDI’10],   SKI [OSDI’14], 
  - Razzer [S&P’19],   Snowboard [SOSP’21], …

  - Various methods are used
    (e.g., breakpoints, suspending vCPUs...)



Challenges in identifying out-of-order bugs

10

Thread interleaving

The order of memory accesses 
between multiple threads

Out-of-order execution

The order of memory accesses 
inside a single thread

OoO bugs manifests depending on two types of non-deterministic behaviors

No approach has been proposed to
control out-of-order execution

Even worse, previous approaches obscure
the observation of out-of-order execution!



Challenges in identifying out-of-order bugs

11

ptr = malloc();
ready = true;

Syscall A Syscall B

if (ready)
*ptr = 1

BP

ptr is always initialized…

Controlling thread interleaving obscures the effect of out-of-order execution

BP acts as a memory barrier

A new method is required to control out-of-order execution



In this work, we introduce…

12

OEMU
- A mechanism to tame the non-deterministic behavior of out-of-order execution

during runtime

Ozz
- A kernel fuzzer tailored to find OoO bugs by deterministically controlling

- Out-of-order execution through OEMU, and
- Thread interleaving     thruugh a custom scheduler from a previous work1

1: Jeong, Dae R., Byoungyoung Lee, Insik Shin, and Youngjin Kwon.
   "Segfuzz: Segmentizing thread interleaving to discover kernel concurrency bugs through fuzzing." In 2023 IEEE Symposium on Security and Privacy (SP).



In this work, we introduce…

13

OEMU
- A mechanism to tame the non-deterministic behavior of out-of-order execution

during runtime

Ozz
- A kernel fuzzer tailored to find OoO bugs by deterministically controlling

- Out-of-order execution through OEMU, and
- Thread interleaving     through a custom scheduler from a previous work1

1: Jeong, Dae R., Byoungyoung Lee, Insik Shin, and Youngjin Kwon.
   "Segfuzz: Segmentizing thread interleaving to discover kernel concurrency bugs through fuzzing." In 2023 IEEE Symposium on Security and Privacy (SP).



OEMU

A mechanism to control out-of-order execution during runtime
- Consisting of a compiler pass and callback functions

14

Source code

X = 1;
r1 = Y;

Compiled binary

store_value(&X, 1);
r1 = load_value(&Y);

Compile

Providing two primitive operations
- Delayed store operation
- Versioned load operation



Delayed store operation

15

Store buffer
      -   A small hardware component that temporary 
           holds the results of store operations

      -   It may change the order in which the results
           of store operations are written to memory

➔ OEMU emulates the store buffer!

Emulating how hardware reorders store operations

Memory

CPU0 CPU1

Store
buffer

Store
buffer



Delayed store operation

16

A:  ptr = malloc();
B:  ready = true;

Syscall A Syscall B

if (ready)
*ptr = 1

We want to reorder
the exec. order B ➔  A

Memory

ptr ready

falseuninit.

Per-core virtual  store buffer

We instruct the store buffer to
   1) hold the value of ptr
   2) flush the value of ready

During runtime…

Uninitialized access!

through emulating the store buffer



Delayed store operation

17

A:  ptr = malloc();
B:  ready = true;

Syscall A Syscall B

if (ready)
*ptr = 1

We want to reorder
the exec. order B ➔  A

Memory

ptr ready

falseuninit.

<ptr, addr>

Per-core virtual  store buffer

We instruct the store buffer to
   1) hold the value of ptr
   2) flush the value of ready

During runtime…

Uninitialized access!

through emulating the store buffer



Delayed store operation

18

A:  ptr = malloc();
B:  ready = true;

Syscall A Syscall B

if (ready)
*ptr = 1

We want to reorder
the exec. order B ➔  A

Memory

ptr ready

uninit.

<ptr, addr>
<ready, true>

Per-core virtual  store buffer

We instruct the store buffer to
   1) hold the value of ptr
   2) flush the value of ready

During runtime…

Uninitialized access!

through emulating the store buffer

true



Delayed store operation

19

A:  ptr = malloc();
B:  ready = true;

Syscall A Syscall B

if (ready)
*ptr = 1

We want to reorder
the exec. order B ➔  A

Memory

ptr ready

uninit.

<ptr, addr>
<ready, true>

Per-core virtual  store buffer

We instruct the store buffer to
   1) hold the value of ptr
   2) flush the value of ready

During runtime…

Uninitialized access!

through emulating the store buffer

true



    *ptr = 1

Versioned load operation

A processor may read memory ahead of previous instructions

    Ex) reading the address of ptr before ready in Syscall B

20

ptr = malloc();
memory_barrier();
ready = true;

Syscall A Syscall B

if (ready)

Uninitialized access!

Read the invalid addr of ptr

Genuine architectural behavior

Another memory barrier is needed here!



Versioned load operation

A processor may read memory ahead of previous instructions

  Ex) reading the address of ptr before ready in Syscall B

A versioned load operation emulates this hardware behavior
    - It allows a load operation to read an old version of the value

21

ptr = malloc();
memory_barrier();
ready = true;

Syscall A Syscall B

if (ready)
    *ptr = 1

may read the old and invalid
address of ptr

OEMU manages multiple versions of a value

Please check the paper for detail!

Record the invalid addr of ptr

Emulating the architectural behavior



In this work, we introduce…

22

OEMU
- A mechanism to tame the non-deterministic behavior of out-of-order execution

during runtime

Ozz
- A kernel fuzzer tailored to find OoO bugs by deterministically controlling

- Out-of-order execution through OEMU, and
- Thread interleaving     through a custom scheduler from a previous work1

1: Jeong, Dae R., Byoungyoung Lee, Insik Shin, and Youngjin Kwon.
   "Segfuzz: Segmentizing thread interleaving to discover kernel concurrency bugs through fuzzing." In 2023 IEEE Symposium on Security and Privacy (SP).



Ozz

A kernel fuzzer tailored to identify OoO bugs through two steps
- Step 1: Running single-threaded inputs to dynamically profile memory accesses
- Step 2: Running multi-threaded inputs to find OoO bugs

23

fd = syscall A(x, y)

syscall B(fd, z)

Sequential Input

Sequential Input

Sequential Input

syscall C(fd, w) Thread
interleaving

Out-of-order
execution

Step 1 Step 2



Step 1: Profiling memory accesses

Ozz utilizes fuzzing to generate sequential inputs

      -   Exploring execution paths as much as possible

      -   Dynamically tracing memory accesses of system calls

Select system call pairs accessing shared memory objects

 -   Ozz will run them concurrently in Step 2

24

fd = syscall Ay)

syscall B(fd, z)

Sequential Input

syscall C(fd, w)

fd = syscall A(x,y) syscall B(fd, z)

…

fd = syscall A()

syscall B(fd, z)

Sequential Input

syscall C(fd, w)
fd = syscall A(x, y)

syscall B(fd, z)

Sequential Input

syscall C(fd, w)



Step 2: Finding OoO bugs

25

ptr = malloc();

ready = true;

Syscall A Syscall B

if (ready)
*ptr = 1

Uninitialized access!

1. Guess where a memory barrier is missing

2. Execute instructions in a way that would 
     not happen if the memory barrier existed

3. Observe whether the kernel malfunctions

How?
ptr = malloc();

If a memory barrier existed,
the store to ptr would not be delayed

memory_barrier();



Step 2: Finding OoO bugs

Maximizing the number of reordered memory accesses

26

Guess where a memory barrier is missing

Syscall A Syscall B

ptr->len = len;
ptr->ops = &ops; 
ready = true;

if (ready) {
    len = ptr->len; 
    ptr->ops->confirm(len);
}

Case 1
Case 2

The more execution deviates from a sequential order,
the harder it becomes to reason about



Step 2: Finding OoO bugs

Maximizing the number of reordered memory accesses

27

Guess where a memory barrier is missing

Syscall A Syscall B

ptr->ops = &ops; 
ready = true;

if (ready) {
    len = ptr->len; 
    ptr->ops->confirm(len);
}

Case 1
Delayed by OEMU

Enforced by the custom scheduler

ptr->len = len;ptr->len = len;



Step 2: Finding OoO bugs

Maximizing the number of reordered memory accesses

28

Guess where a memory barrier is missing

Syscall A Syscall B

ptr->len = len;
ptr->ops = &ops; 
ready = true;

if (ready) {
    len = ptr->len; 
    ptr->ops->confirm(len);
}

Case 2

ptr->len = len;
ptr->ops = &ops; Delayed by OEMU

Enforced by the custom scheduler

In Case2, more memory accesses are reordered than in Case 1
Ozz prioritizes Case 2 as it is harder for developers to reason about



Evaluation

We found 11 new OoO bugs in the Linux kernel
- Some were found in popular subsystemssuch as TLS or eBPF
- We reported all of them, and they were accordingly patched by the kernel developers

29

Finding unknown bugs / reproducing known bugs



Evaluation

We found 11 new OoO bugs in the Linux kernel
- Some were found in popular subsystemssuch as TLS or eBPF
- We reported all of them, and they were accordingly patched by the kernel developers

We show OMEU/Ozz can reproduce 8 out of 9 known OoO bugs
- The one failing case involves another non-deterministic behavior, thread migration

Please check our paper for more evaluation

30

Finding unknown bugs / reproducing known bugs



Conclusion

Our work introduces
- OEMU

- A mechanism to tame the non-deterministic behavior of out-of-order execution during runtime

- Ozz
- A kernel fuzzer tailored to find OoO bugs by deterministically controlling

- Out-of-order execution   through OEMU, and
- Thread interleaving       through a custom scheduler from a previous work

Ozz finds 11 new out-of-order concurrency bugs in the Linux kernel

31



Ozz: Identifying Kernel Out-of-Order Concurrency Bugs 
with In-Vivo Memory Access Reordering

Q&A


	Slide 1: Ozz: Identifying Kernel Out-of-Order Concurrency Bugs with In-Vivo Memory Access Reordering
	Slide 2: Ozz: Identifying Kernel Out-of-Order Concurrency Bugs with In-Vivo Memory Access Reordering
	Slide 3: Concurrency bugs caused by Out-of-order execution
	Slide 4: Concurrency bugs caused by Out-of-order execution
	Slide 5: Memory barrier to prevent out-of-order execution
	Slide 6: Machines exhibiting this behavior
	Slide 7: Machines exhibiting this behavior
	Slide 8: Challenges in identifying out-of-order bugs
	Slide 9: Challenges in identifying out-of-order bugs
	Slide 10: Challenges in identifying out-of-order bugs
	Slide 11: Challenges in identifying out-of-order bugs
	Slide 12: In this work, we introduce…
	Slide 13: In this work, we introduce…
	Slide 14: OEMU
	Slide 15: Delayed store operation
	Slide 16: Delayed store operation
	Slide 17: Delayed store operation
	Slide 18: Delayed store operation
	Slide 19: Delayed store operation
	Slide 20: Versioned load operation
	Slide 21: Versioned load operation
	Slide 22: In this work, we introduce…
	Slide 23: Ozz
	Slide 24: Step 1: Profiling memory accesses
	Slide 25: Step 2: Finding OoO bugs
	Slide 26: Step 2: Finding OoO bugs
	Slide 27: Step 2: Finding OoO bugs
	Slide 28: Step 2: Finding OoO bugs
	Slide 29: Evaluation
	Slide 30: Evaluation
	Slide 31: Conclusion
	Slide 32: Ozz: Identifying Kernel Out-of-Order Concurrency Bugs with In-Vivo Memory Access Reordering

